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Abstract: Diffusion-based policies have shown remarkable capability in execut-
ing complex robotic manipulation tasks but lack explicit characterization of geom-
etry and semantics, which often limits their ability to generalize to unseen objects
and layouts. To enhance the generalization capabilities of Diffusion Policy, we
introduce a novel framework that incorporates explicit spatial and semantic infor-
mation via 3D semantic fields. We generate 3D descriptor fields from multi-view
RGBD observations with large foundational vision models, then compare these
descriptor fields against reference descriptors to obtain semantic fields. The pro-
posed method explicitly considers geometry and semantics, enabling strong gen-
eralization capabilities in tasks requiring category-level generalization, resolving
geometric ambiguities, and attention to subtle geometric details. We evaluate our
method across eight tasks involving articulated objects and instances with varying
shapes and textures from multiple object categories. Our method demonstrates
its effectiveness by increasing Diffusion Policy’s average success rate on unseen
instances from 20% to 93%. Additionally, we provide a detailed analysis and visu-
alization to interpret the sources of performance gain and explain how our method
can generalize to novel instances. Project page
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Figure 1: Generalizable Diffusion Policy using 3D Semantic Fields. Our approach introduces a diffusion
policy capable of generalizing to new instances within a category by utilizing 3D semantic fields. These fields
distinguish semantically meaningful parts of objects in 3D space, as illustrated in the heatmap example. Panel
(a) on the left showcases daily task examples where semantic understanding is crucial, while panel (b) on the
right demonstrates our method’s ability to highlight semantically meaningful parts, such as a knife handle, and
how our predicted policy accomplishes these tasks using the 3D semantic fields.
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1 Introduction
Diffusion-based policies have recently shown promising results in imitation learning for real robot
deployment in complex robotic manipulation tasks [1, 2], because they can express multimodal
action distribution, output high-dimensional actions, and train stably. However, existing end-to-
end diffusion policy frameworks do not generalize to novel instances due to their brittleness to
environment variances, such as object appearances and background changes. Our work proposes
a diffusion policy framework capable of category-level generalization and robust to environmental
changes using 3D semantic fields.
Previous work has explored the use of point clouds as policy inputs to help generalization [2, 3],
but the reliance on geometric information is insufficient for fine-grained scene understanding and
generalization. For instance, as illustrated in Figure 1 (b), a marker’s head and tail are geometrically
ambiguous despite their functional and semantic differences. In this work, we augment geometric
information with semantics to generalize to novel instances, resolve geometric ambiguity, and attend
to subtle geometric details.
An ideal representation should not only extract geometric information from raw observation but
also retain semantic information for better category-level generalization. In this work, we introduce
a diffusion policy framework that uses a scene representation in the form of 3D semantic fields.
The 3D semantic fields are defined as the similarity fields, where the similarity score is higher for
points closer to one object part, such as knife handles. Note that the 3D semantic fields have multiple
channels, as shown in Figure 2, where the first channel corresponds to the shoe tongue, and the last
one corresponds to the shoe cuff. Our framework consists of three main modules: a 3D descriptor
fields encoder, a semantic fields constructor, and an action policy. The 3D descriptor encoder takes in
multi-view RGBD observations and outputs a point cloud with high-dimensional descriptors using
large foundational vision models like DINOv2 [4]. These descriptors are then fed into the semantic
fields constructor and converted into low-dimensional semantic fields. Finally, the policy takes in
the semantic fields along with the point cloud as inputs and predicts actions.
The proposed framework offers three benefits: (1) Category-level generalization: As semantic
fields contain both 3D and semantic information, it guides our policy to focus on semantically
meaningful parts essential for task completion, allowing generalization across instances within a
category. (2) Resolve geometric ambiguity: Geometric information can be ambiguous. For ex-
ample, the knife blade and knife handle are geometrically similar despite functional and semantical
differences. Our semantic fields can localize space semantically close to parts important for task
completion, such as knife blades, to disambiguate vague geometric information. (3) Attention to
subtle semantic details: Semantic details might be lost due to real-world observation noise, such as
toothbrush head and soda can tab. Some tasks are impossible to accomplish without sufficient de-
tails, such as spreading toothpaste on a toothbrush and flipping a lying soda can upwards, as shown
in Figure 1. Because our semantic fields highlight semantically distinct regions, our method can pay
attention to nuanced semantic details for task completion.
We systematically evaluate our method across eight tasks. Our task settings involve novel instances,
ambiguous object geometry, and require attention to subtle semantic details. Compared to baseline
methods, which frequently fail to generalize to novel instances due to a lack of both 3D and semantic
information in their representation, our approach demonstrates significant advantages in category-
level generalization. It also leads to substantial performance improvements in scenarios containing
geometric ambiguity and subtle details. Through comprehensive experiments, we show an improve-
ment in Diffusion Policy’s average success rate on unseen instances from 20% to 93%. We also
provide a detailed analysis of how well and why our method can generalize to novel instances.
In this work, our contributions are threefold: (1) We propose a diffusion policy framework that uses
3D semantic fields, which leverages visual foundation models to encode the environment’s geomet-
ric and semantic information. (2) Our design allows category-level generalization, differentiating
geometric ambiguity, and attending to geometric details. (3) We conduct comprehensive experi-
ments and improve the original diffusion policy’s average success rate on unseen instances from
20% to 93%. We also provide a detailed analysis of how well and why our method can generalize
to novel instances.
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Figure 2: Method Overview. The top row (a) shows a sequence of real policy rollouts in the aligning shoe
task. We first take in multi-view RGBD observations (i), then extract the 3D descriptor field, with each point
possessing a corresponding high-dimensional descriptor (ii) [5]. We then select reference features from 2D
reference images. By computing the cosine similarity between the descriptor field and 2D reference semantic
features, we could obtain several semantic fields (iii). These semantic fields, concatenated with the point cloud,
are then input into PointNet++ and the diffusion policy to output predicted actions (iv).

2 Related Works

Diffusion Models for Robotics. Beginning with random samples, diffusion models operate by
iterative denoising to reveal the underlying distribution. They are widely used in robotics, including
navigation [6], manipulation [1, 2, 7–14], control [15], and planning [16–18]. Among these works,
Diffusion Policy and 3D Diffusion Policy are closely related to our work [1, 2].
Diffusion Policy produces a visuomotor policy under the action diffusion model, which can model
the multi-modal distribution of demonstration actions in the real world. However, it relies on multi-
view RGB observations, which are brittle to environment changes, including novel object instances,
camera viewpoints, and background changes, and fail to generalize to novel instances. Instead of
RGB observations, our work enables category-level generalization using 3D semantic fields.
3D Diffusion Policy approaches this problem using point clouds as inputs [2]. While this is proven
to be sample-efficient, point clouds without semantic information can be insufficient for many ma-
nipulation tasks. In this work, we augment geometric information with semantic information using
foundational vision models.

Geometric Representation in Robotic Manipulation. One typical geometric representation used
in robotics is point clouds [3, 19–26], which enables the policy to focus on geometry and facilitates
generalization across different environments. Yet, this often results in the loss of critical RGB data,
limiting the understanding of an object’s semantic properties. Unlike these approaches, our approach
retains both semantic and geometric information, enhancing downstream decision-making.
Another line of works uses keypoints as the geometric representation in robotic manipulation [27–
34]. They have shown impressive generalization capabilities and high efficiency due to their low
dimension. However, the resulting sparsity loses geometric details and limits the range of tasks
that can be effectively addressed. In contrast, our framework employs a representation with rich
geometric information and enables a broader range of tasks.
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Semantic Representation in Robotic Manipulation. Semantic reasoning is an ongoing field in
robotics [35]. One common semantic representation learning frame is directly learning object-
centric or scene-centric embeddings from RGB observations [36–44]. However, these representa-
tions are hard to generalize to new environments with different backgrounds and lighting conditions.
In contrast, we use 3D semantic representation, which is generalizable across diverse environments
and instances. Another class of semantic representation extracts functional or affordance informa-
tion from observations [43, 45–52]. This line of work focuses on tasks that can be accomplished
using motion primitives such as grasping, picking, and placing, while our diffusion-based policy is
more flexible in action representation and tasks.
A recent line of research used neural implicit models such as Occupancy Networks [53] or
NeRFs [54] to encode semantic features [5, 9, 25, 55–61]. GeFF is the closest one to our work.
It operates by utilizing FeatureNeRF [62], which distills a NeRF model from foundational models.
Although the distillation process allows for building NeRF upon sparse input views, it reduces the
generalization capability. In contrast, we extract 3D descriptor fields without distillation, which
inherits generalization capabilities from foundational vision models. In addition, GeFF uses prede-
fined open-push-close action sequences to solve manipulation tasks. Our method differs by deploy-
ing an imitation learning policy that could accomplish more complicated tasks.

3 Method
3.1 Problem Statement
We define our system as a Markov Decision Process (MDP) consisting of state s ∈ S and action
a ∈ A. The system transition is defined through the dynamics model st+1 = f(st, at). We as-
sume predicted actions follow the probability distribution at ∼ Ppred(a|st) = π(st), where π is
the learned policy. The goal is to minimize the difference between Ppred(a|st) and ground truth
action probability Pgt(a|st), given as a set of human demonstrations D = {τ0, τ1, ..., τN}, where
τi represents a trajectory comprising {s0, a0, s1, ..., aT }. Here, the state s consists of a sequence of
multi-view RGBD observations, and the action a is a sequence of robot states.

3.2 3D Descriptor Fields
We use an off-the-shelf large foundational vision model, DINOv2 [4], to obtain semantic features
from multi-view RGBD observations. Given its ability to extract consistent semantic features from
the RGB images across context and instance variances, we selected it as the backbone network.
We provide pseudocode for building 3D descriptor fields in Algorithm 1. We denote single-view
RGBD observation as oi = (Ii,Ri), with i ∈ {1, 2, ..., N} representing the camera index, consist-
ing of an RGB image Ii ∈ RH×W×3 and a depth image Ri ∈ RH×W . We first use DINOv2 to
extract dense 2D feature maps Wi corresponding to the RGB image Ii [4]. For an arbitrary 3D point
p, we project it onto the image space to find its corresponding pixel location ui and the distance to
camera ri. We then interpolate to derive features fi from the feature map and the depth r′i from Ri.
The depth difference ∆ri = r′i − ri reflects how distant p is from the surface. When p is closer to
the surface in view i, greater weight is given to fi. We fuse features from multiple viewpoints by
applying a weighted sum, thus obtaining the descriptor f corresponding to p. In practice, we follow
the implementation details in D3Fields [5] to extract point cloud P ∈ RK×3 and associated features
F ∈ RK×F , where K is the point cloud’s size.

3.3 3D Sematic Fields
First, we obtain several 2D images containing the task-relevant object category and extract feature
maps. Then we select features from each feature map and take the average to get a set of reference
descriptors Fref ∈ RM×F . Each descriptor represents a part of the object, such as the shoe head.
We denote the set of reference descriptors Fref with M descriptors and descriptor fields F with K
descriptors such that F = {Fi ∈ RF |i ∈ {1, ...,K}} and Fref = {Fref,j ∈ RF |j ∈ {1, ...,M}}.
The semantic fields C ∈ RK×M are defined as the similarity between the descriptor fields and
reference descriptors:

Cij =
Fi · Fref,j

||Fi||||Fref,j ||
. (1)
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By computing the similarity scores, we convert high-dimensional descriptor fields into M -
dimensional semantic fields, where M is typically less than 5. We then concatenate semantic fields
C and raw point cloud P together, which are then inputted into the policy.

3.4 Policy Learning Algorithm 1 3D Descriptor Fields Computation

1: Infer feature map Wi from single RGB image Ii
2: procedure EVALUATE(p)
3: Project p to camera i and compute projected pixel

ui and distance to camera ri
4: Obtain interpolated features fi = Wi[ui]
5: Obtain depth r′i = Ri[ui]
6: Compute depth difference ∆ri = r′i − ri
7: Fuse features Fj = h(fi,∆ri), i ∈ {1, 2, ..., N}

In this work, we model our policy
as Denoising Diffusion Probabilistic
Models (DDPMs), similar to Diffu-
sion Policy [1, 63]. Instead of re-
gressing the action directly, we train
a noise predictor network

ϵ̂k = ϵθ(a
k, s, k), (2)

that takes in noisy actions ak, current observations s, and denoising iterations k and predicts the
noise ϵ̂k. During training, we randomly choose a denoising step k and sample noise ϵk added to the
unmodified sample a0. Our training loss is the difference between ϵk and predicted noise:

L = MSELoss(ϵk, ϵ̂k). (3)
During the inference time, our policy starts from random actions aK and denoises for K steps to
obtain the final action predictions. At each step, the action is updated following

ak−1 = α
(
ak − γϵθ(a

k, s, k) +N (0, σ2I)
)
, (4)

where α, γ, and σ are hyperparameters. In practice, we input 3D semantic fields into PointNet++
and obtain visual features. Then we feed visual features into diffusion policy, similar to [1].

(a) Robot Setup (b) Objects
Training Objects Testing Objects

Figure 3: Real Experiment Setup. (a) We use four RealSense cameras to capture RGBD observations and
ALOHA robots to execute policy. (b) We test on a diverse set of objects, including shoes, soda cans, marker
pens, knives, spoons, toothbrushes, and toothpaste, with diverse geometry and appearance.

4 Experiments
In this section, we evaluate our method on eight diverse tasks. We aim to answer the following three
questions through experiments. 1) How does the performance of our method compare to that of
the state-of-the-art imitation learning methods? 2) How well can our method generalize to different
configurations and instances? 3) What enabled our method to generalize to novel instances?

4.1 Setup
For experiments in simulation, we use SAPIEN [64] to build the environments and evaluate the
policies. For the real-world experiments, we use the ALOHA robot and four RealSense cameras for
real-world data collection and testing [65]. Figure 3 shows our real-world setup and objects used.
We evaluate our method on eight tasks, as shown in Figure 4. We test in the simulation on Hang
Mug and Insert Pencil tasks. In the real world, we evaluate our method’s ability from different per-
spectives, such as insignificant geometric details, category generalization, and geometric ambiguity.
We collected 200 demonstration episodes for the Hang Mug task, 100 episodes for Insert Pencil
task, and 60 episodes for all real-world tasks. More details are listed in the supplementary material.
For each task, we train one policy to accomplish that single task.
We test our method on various object categories, including shoes, toothbrushes, soda cans, and
knives, among others, which present significant challenges for category-level generalization due to
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factors such as large geometric variances, ambiguous geometric information, and nuanced geometric
details. More detailed descriptions of the tasks can be found in the supplementary material.
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Figure 4: Success Rate. Our method was evaluated across eight tasks. (a) The aggregated quantitative
results show that our method has similar performance as diffusion policy for seen instances, but our method
outperforms all baselines on unseen instances. (b) For the seen instances, diffusion policy and our method
have similar performances on two simulation tasks. (c) Diffusion policy performance degrades significantly
on unseen instances. In addition, our method outperforms all other baselines, which underscores our policy’s
capability to attend to geometric details, distinguish geometric ambiguities, and generalize to novel instances.

4.2 Comparison with Baselines
We compare our method with three baselines: 1) Ours without Semantics: input raw point cloud
without semantic fields, 2) vanilla Diffusion Policy (DP), and 3) DP with RGBD: vanilla DP but
with depth observations. For all baselines, we utilize four cameras to obtain observations and input
them into the policy. We evaluate different policies by the success rate. The quantitative result is
summarized in Figure 4 with detailed numbers in the supplementary material.
Our method shows similar performance with the original diffusion policy in the simulation on seen
instances. However, when generalizing to unseen instances, diffusion policy performance degrades
significantly, because it takes RGB images as input, which is brittle to environmental factors like
object appearances and geometries. Therefore, the diffusion policy predicts undesirable actions
and fails to accomplish the task. In contrast, our framework encodes explicit 3D and semantic
information about the scene, which is robust to object appearance and geometry variances, which
helps the policy to generalize to novel instances.
In addition, our method consistently outperforms ours without semantics, whether for seen instances
or unseen instances. The benefits from 3D semantic fields are threefold. First, they help to attend
to geometric details, such as the can tab, to place the can on the table upright, while ours without
semantics cannot when solely relying on geometry information. Second, 3D semantic fields help
to distinguish geometric ambiguity. For instance, when grasping the knife, it is hard to tell the
knife directions from ambiguous geometry, which might lead to unsafe actions like grasping the
knife blade. Our 3D semantic fields encode semantic information like knife handles to distinguish
geometric ambiguities and show a higher success rate in Figure 4 (c)(iii). Third, Figure 4 (c)(iv)
demonstrates our 3D semantic fields could help policy focus on semantically meaningful parts to
complete tasks and generalize to novel instances.
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Figure 5: Policy Rollout in Real World. The figure illustrates the policy rollout results in the real world. On
the left, the blue block displays the demonstration examples and corresponding training instances. On the right,
the orange block presents policy rollout results. From left to right, they are, respectively, initial configurations,
diffusion policy, diffusion policy with RGBD, ours without semantics, and our method. We summarize four
common failure modes. Early failure and grasping failure could happen when the novel instance is presented.
Diffusion policy may also lead to unsafe behavior when encountering novel instances. Ours without semantics
might identify wrong directions due to geometric ambiguity and nuanced geometric details.

We found that Diffusion Policy with RGBD is not as effective as our method. Directly adding depth
observation to the diffusion policy will make the input space even larger. Therefore, it would require
more demonstrations to have sufficient training data coverage, which can make it less data efficient.
Figure 5 shows real-world policy rollout results. We notice different failure modes for baseline
methods. For diffusion policy and diffusion policy with RGBD, when a novel instance is presented,
they may stop early and fail to make progress. Due to their reliance on 2D observations, they cannot
generalize to unseen instances with varying appearances and geometries. Ours without semantics
often fail to differentiate geometric ambiguity, like knife handles, while our method could identify
the right part for manipulation. Our method also focuses on geometric details, like the soda can tab
to accomplish the can flipping task, while ours without semantics places the soda can upside down.

4.3 Generalization to Novel Configurations and Instances
We also analyze how well our method can generalize to novel configurations and instances. Figure 6
illustrates the predicted actions of different policies under the same observations. For the seen
instances, as shown in the leftmost column, we can see that the predicted trajectories for all policies
in the first example point towards the knife handle correctly. However, when the knife direction
changes, our method without semantics fails to respond accordingly, while the diffusion policy and
our method predict actions accordingly. This demonstrates that our method can understand the
semantic difference between knife handle and knife blade, which results in safe robot behaviors.
When the novel instance is presented with similar configurations, our method will predict a suc-
cessful trajectory guiding toward the knife handle, while diffusion policy will predict a nonsmooth
trajectory, which shows that it is brittle to environmental factors and lacks category-level generaliza-
tion capabilities. Although our method without semantics predicts a smooth trajectory, it approaches
the knife blade, which is unsafe.

4.4 Generalization Analysis
We visualize the 3D semantic fields in Figure 7 by overlaying them with the raw point cloud. These
semantic fields benefit the policy for two primary reasons: 1) Highlighted points are semantically
meaningful and crucial for task completion. For example, to collect books on the shelf upright, the
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robot must recognize the book titles. Geometric information alone is inadequate for task completion.
2) Semantic fields are consistent across different instances. The mug example shows that the activa-
tion on the handle is consistent across mugs with various appearances and poses. The category-level
consistency enables our method to achieve category-level generalization. We also present t-SNE
analysis in the supplementary material.

4.5 Extension to Other IL Methods
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Figure 6: Predicted Action Comparisons. We com-
pare different policies’ responses under the same state.
Diffusion policy’s predicted actions change with knife
direction accordingly but are not smooth for novel in-
stances. Due to geometric ambiguity, our method with-
out semantics fails to distinguish knife directions, and
predicts similar actions even under different knife di-
rections, while our method consistently recognizes the
knife handle position and predicts correct actions.

We also extended our 3D semantic fields and
showed benefits to other imitation learning (IL)
methods, such as Action Chunking with Trans-
former (ACT) [65]. The detailed results are
presented in the supplementary material.

5 Conclusion
In this work, we proposed a diffusion policy
framework leveraging 3D semantic representa-
tions, with policies modeled as DDPMs con-
ditioned on the semantic fields alongside point
clouds. We conduct comprehensive physical
experiments to show that our framework can
generalize to novel instances within the cate-
gory, resolve geometric ambiguity, and resolve
nuanced geometric details. Compared with the
vanilla diffusion policy with 20% success rate,
our method can reach 93% success rate on un-
seen instances, demonstrating the effectiveness
of our method.
Limitation. For each task, we select a set of
fixed reference features to construct semantic
features. However, for long-horizon and fine-
grained tasks, such as making coffee and as-
sembling, the policy’s attention needs to adapt
as tasks progress. Constructing task-specific
semantic fields that can adaptively select the abstraction level, can be a future direction. In addition,
our method could become more interpretable and potentially more efficient if we can incorporate
the geometric properties in a more explicit fashion.

RGB Observation
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Raw Point Cloud Similarity Field 1 Similarity Field 2 Similarity Field 3

M
ug

Figure 7: 3D Semantic Fields Visualization. We visualize 3D semantic fields in the scene with multiple
instances from the same category. 3D semantic fields exhibit similar patterns across different instances, such
as highlighted book titles of all books. Furthermore, these highlighted areas represent semantically meaningful
parts and are important for various tasks, such as shoelaces, shoe heads, book stands, mug handles, and so on.
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