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4 Detailed Comparisons with Prior Works 11

1 Method

1.1 Detailed Comparisons with Prior Semantic Fields
Compared to prior works on semantic fields and representation, our paper offers following benefits:

* Generalizable Representation: Some existing semantic fields or representations are
trained on small-scale datasets and are challenging to transfer to novel scenes or object
categories. For example, Dense Object Nets (DON) [1] are trained via contrastive learning,
which requires foreground and background separation and a careful selection of positive
and negative pairs. This means that deploying a DON in a new environment or on new
object categories requires additional training efforts. Similarly, DSR-Net [2] trains its rep-
resentation on datasets collected by heuristic policy, requiring manual designs for different
scenes. Therefore, deploying DSR-Net on new objects and scenarios also requires extra
training efforts. In contrast, our pipeline does not need additional training and can be ap-
plied to a diverse set of object categories and scenes by leveraging visual foundational
models.

* Efficiency: Several prior works build semantic fields using visual foundational models.
However, some are not efficient enough for imitation learning, which needs to obtain visual
feedback in real time. For example, F3RM [3] takes about 90 seconds for each scene, and
Feature 3DGS [4] training time is around 200 seconds, according to its Supplementary
Figure A. In contrast, our 3D semantic fields only need 0.166 seconds per frame, and the
total inference time for each step, including the diffusion process, is 0.226 seconds.

» Sparse Views: Existing semantic fields need an extensive number of camera views to build
quality fields, which limits their usage in imitation learning. For example, F3RM [3] re-
quires 50 images to scan the workspace, and Feature 3DGS [4] needs 80 views, as specified
in its Supplementary Section D. ConceptGraphs [5] uses the Replica dataset, which con-
tains 2,000 views for each scene. In contrast, we use only four cameras placed around the
workspace to build our 3D semantic fields, enabling us to obtain real-time visual feedback
and achieve a control frequency of 4-5 Hz.

1.2 Detailed Comparisons with Prior Diffusion Policies
Compared to prior works on diffusion policies, our paper offers the following benefits:

» Category-Level Generalization: Although existing diffusion policies based on 3D point
clouds, such as 3D Diffuser Actor [6], demonstrate certain levels of generalization capa-
bilities, they do not yet exhibit robust enough category-level generalization capabilities. In
our work, we introduce 3D semantic fields that can significantly boost performance and
facilitate category-level generalization, as shown in Figure 4 (iv) of our paper.

* Semantic Understanding: Prior works, such as 3DP [7], have explored using raw 3D point
clouds as inputs for diffusion policies. However, we found that geometric information can
be ambiguous and miss important details, leading to failure in many daily tasks. In con-
trast, we provide additional semantic features to guide the policy to focus on semantically
meaningful object parts to accomplish various tasks.

* Flexible Action Representation: We also note that 3D Diffuser Actor predicts end-effector
keyposes instead of a continuous trajectory, requiring manual keypose definition for each
task, as shown in its Appendix A.6. Additionally, keypose representation only specifies
the starting and end poses, which may not suffice for tasks requiring the control over the
whole trajectory, such as scooping coffee beans out and transporting them (our Use Spoon
task). In our work, we predict actions over the whole trajectory, which is more flexible for
different tasks.



1.3 Detailed Explanation on Geometric Ambiguity

In our paper, geometric ambiguity means that geometric information alone cannot distinguish be-
tween different underlying object states. For example, in the Open Pen task, the raw point cloud
data of the pen is ambiguous because rotating the pen 180 degrees can result in a very similar point
cloud. This makes it difficult to determine the position of the cap—a critical piece of state-related
information for the success of the downstream cap-opening task.

One might consider incorporating RGB information into the point cloud. However, RGB informa-
tion is sensitive to appearance variations, limiting its ability for category-level generalization.

Therefore, in our work, it is the semantic information that helps the policy to disambiguate geometric
ambiguity and learn the correct correlation between observations and robotic actions. We combine
geometric information with the semantic field—two necessary components for category-level gen-
eralization in complex manipulation tasks. Geometric information alone is ambiguous about the
underlying states, while the semantic field helps identify where the caps are on different pens with
varying appearances.

1.4 Detailed Explanation on Geometric Details

Compared to RGB data, 3D geometric data is robust to environmental and appearance changes,
helping the diffusion policy better generalize to unseen instances, as shown in Figure 4 and Sup-
plementary Figure 1. However, geometric information may not capture many important details,
whereas semantic fields can highlight the right details and help the policy learn the correct correla-
tion between observations and robot actions.

For example, in the Place Can task, even if there are slight geometric variations in the can tab, it can
be difficult for the policy to attend to that location. Being aware of geometric details like the can tab,
the trained policy can place the can in the correct pose instead of an upside-down position. In our
experiments, we show that semantic fields can significantly boost the task success rate in the Place
Can and Use Toothbrush tasks.

1.5 PointNet++ Details

We use PointNet++ to encode one latent vector from the point clouds [8]. There are several key
details regarding its usage.

* No BatchNorm Layer: In the diffusion policy implementation, exponential moving aver-
ages (EMA) of the model parameters are used during the testing, which is not compatible
with BatchNorm.

» Point Set Abstraction: Point set abstraction is an important operation in PointNet++. In
our network, we deploy three layers of point set abstraction. For the first set abstraction,
we have 512 groups with a radius of 0.04 and 32 points. For the second set abstraction,
we have 128 groups with a radius of 0.08 and 64 points. For the last set abstraction, all
sampled points are grouped to extract one latent vector.

1.6 Reference Descriptors

For one object category, we use four images to obtain reference descriptors, as shown in Figure 1.
We start by acquiring four images containing the target object category using the Internet or any
arbitrary phone camera. We then obtain a single descriptor by selecting one keypoint on each of the
four images and averaging their corresponding features. Therefore, we only need to select N x 4
keypoints for each object category, where IV is the number of reference descriptors. These reference
descriptors can be used for the entire task (e.g., 100 training demonstrations and testing scenes),
making the labeling effort light.
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Figure 1: Reference Images and Descriptors Example. For one object category, we will obtain N reference
descriptors, with N = 3 in these examples. For each descriptor, we will select one keypoint representing a
specific object part from each figure. The keypoint is denoted as a red pentagram in this figure. We then average
the four descriptors to obtain one reference descriptor.
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2 Experiments Details

2.1 Setup

We summarize object categories and the number of object instances we considered in Table 1.

Task Category Task Name #Demo Object #Train Instances  #Test Instances
Sim Hang Mug 200 Mug 4 2
‘ Insert Pencil 100 Pencil 2 1
Geo. Details Place Can 60 Soda Can 3 3
’ Use Toothbrush 60 Toothbrush 1 4
Align Shoes 60 Shoe 3 5
Cat. Gen. Use Spoon 60 Spoon 2 2
Geo. Ambi Collect Knife 60 Knife 1 2
) ’ Open Pen 60 Marker Pen 1 3

Table 1: Task Details Summary. This table summarizes our task categories, specific tasks, objects,
the number of demonstrations, training instances, and testing instances. We evaluate our framework
on eight tasks and eight object categories, where each object category includes several instances
with diverse appearances and shapes. We divide our tasks into four categories to study our method’s
performance under various task types and scenarios, such as simulation and the real world.

Here is a list of task descriptions:

* Hang Mug (Simulation): Hang a randomly placed mug on a fixed mug tree.

¢ Pencil Insertion (Simulation): Pick up a pencil from the table and insert it into the pencil
sharpener.



* Collect Knife: Collect a lying knife into an open container, and the knife direction is
randomly chosen.

* Open Pen: Bimanually grasp the pen and open it.

* Flip Can: Flip a lying soda can and place it upright.

* Use Toothbrush: Grasp the toothbrush and spread the toothpaste on it.
 Align Shoes: Push shoes towards left.

* Use Spoon: Grasp spoon and scoop materials.
Due to space limitations, in all tables, we will use the following abbreviation:

* Sim.: Simulation
* Geo. Details: Geometry Details
* Geo. Ambi.: Geometry Ambiguity

* Cat. Gen.: Category Generalization

2.2 Demonstrations

In the simulation, we use SAPIEN to create simulation environments. We build an oracle policy to
generate demonstrations in the simulation. The generated dataset contains robot states, multi-view
RGBD observations, and robot actions.

In the real world, the data collection pipeline is similar, with additional calibration steps. We define
the ChArUco board as the world coordinate and calibrate the camera poses to this coordinate. Then,
we manually calibrate the transformation between the robot and the world coordinate. After the
calibration phase, the data collection pipeline records multi-view RGBD observations, robot states,
and robot actions.

2.3 Training

Before training, we preprocess multi-view RGBD observations into 3D semantic fields using the
frozen DINOv2 encoder and save them to CPU memory. During training, the 3D semantic fields
and corresponding ground truth actions are randomly sampled and fed into the diffusion policy.
The training of the diffusion policy follows the practice outlined in the original Diffusion Policy
paper [9].

2.4 Inference

During inference, the diffusion policy takes in one frame of multi-view RGBD observation and
converts it into 3D semantic fields. Then, the 3D semantic fields are input into the diffusion policy
to predict an action sequence.

We measure our inference time on the knife-collecting task, repeating the inference steps 10 times
and computing the average time. Each inference step takes 0.226 seconds. The predicted action
sequence is at 10 Hz, meaning the time difference between two consecutive actions in the action se-
quence is 0.1 seconds. This action sequence is then fed into the low-level controller, which operates
at 50 Hz.

2.5 Evaluation
Here we list the evaluation criteria for each task:

* Hang Mug (Sim): If the final height of the mug is larger than 0.1m and lower than 0.3m,
and the xy-space distance between the mug holder and the mug is lower than 0.1m, the
reward is 1. Otherwise, the reward is 0.
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Pencil Insertion (Sim): If the pencil’s final height is larger than 0.05m, and the xy-space an-
gle between the pencil and the hole is smaller than arccos(0.8), the reward is 1. Otherwise,
the reward is 0.

Place Can: The policy rollout is only successful if the can is grasped and placed upright on
the table.

Use Toothbrush: The policy rollout is only successful if the toothbrush is grasped and the
head of the toothbrush is aligned with the toothpaste tip.

Align Shoes: The policy rollout is only successful if the shoe is rotated towards the left.

Use Spoon: The policy rollout is only successful if the robot grasps the spoon, scoops the
coffee beans, and pours into the bowl.

Collect Knife: The policy rollout is only successful if the robot grasps the knife handle and
puts it in the box.

Open Pen: The policy rollout is only successful if the robot first grasps the pen body using
one hand, and then pulls out the pen tap using another hand.
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Figure 2: Success Rate of Extension to ACT. We measure the success rate of our method, diffusion policy,
ACT with our 3D semantic fields, and ACT on unseen instances across different tasks. We found that our 3D
semantic fields can help other imitation learning methods like ACT to generalize to novel instances as well.
However, in practice, we choose the diffusion policy with 3D semantic fields since it performs the best across
different tasks.



3 Additional Experiments

3.1 Quantitative Experiment Table

As mentioned in Section 4.2 of the main paper, we present a detailed table for Figure 4. This table
provides more concrete results regarding our comparisons with the baseline methods. We can see
that, although the diffusion policy performs well for the seen instances, it fails to generalize to
novel instances. Compared with our method without semantics, our method also demonstrates the
effectiveness of incorporating semantic information.

Task Category Simulation
Task Name Hang Mug Insert Pencil
Instances Seen Unseen Seen Unseen
Ours 95% (19/20) 80% (16/20) 95% (19/20) 90% (18/20)
Ours w/o Semantics 65% (13/20) 85% (17/20)  40% (8/20) 40% (8/20)
Diffusion Policy 95% (19/20) 0% (0/20) 95% (19/20)  25% (5/20)
Diffusion Policy w/ RGBD 0% (0/20) 0% (0/20) 15% (3/20) 20% (4/20)
Task Category Geometry Ambiguity Geometry Details
Task Name Collect Knife =~ Open Pen Place Can Use Toothbrush
Instances Unseen Unseen Unseen Unseen
Ours 100% (9/10) 90% (9/10) | 100% (10/10) 100% (10/10)
Ours w/o Semantics 50% (5/10) 50% (5/10) 60% (6/10) 30% (3/10)
Diffusion Policy 0% (0/10) 0% (0/10) 20% (2/10) 20% (2/10)
Diffusion Policy w/ RGBD | 60% (6/10) 20% (2/10) 0% (0/10) 20% (2/10)
Task Category Category Generalization
Task Name Collect Knife Open Pen Total (Seen)  Total (Unseen)
Instances Unseen Unseen
Ours 100% (10/10) 100% (10/10) | 95% (38/40) 93 % (93/100)
Ours w/o Semantics 60% (6/10) 90% (9/10) 53% (21/40)  59% (59/100)
Diffusion Policy 30% (3/10) 80% (8/10) 95% (38/40) 20% (20/100)
Diffusion Policy w/ RGBD 10% (1/10) 70% (7/10) 8% (3/40) 22% (22/100)

Table 2: Success Rate. The method was evaluated across eight tasks. We observe that the diffusion
policy performs similarly to our method in the seen environments but shows markedly worse perfor-
mance in unseen instances. In addition, compared with ours without semantics, our method shows
a better performance across different tasks and demonstrates the necessity of semantic information.
These results underscore our policy’s capability to achieve category-level generalization and encode
semantic information.

3.2 Extension to ACT

We also extend our representation to other imitation learning methods, such as ACT [10]. Fig-
ure 2 shows the experiment results. First, we found that our representation helps other imitation
learning algorithms generalize to novel instances. This is because raw RGB images are sensitive
to environmental factors and object appearances, while our 3D semantic fields are robust against
environmental changes and novel instances by explicitly using geometric and semantic information.
Second, we found that our method outperforms ACT. We believe the main reason is that the diffu-
sion policy is better at capturing multi-modal demonstration distribution compared to ACT, which is
quite common in the real world. In summary, our representation can be applied to different imitation
learning methods, but we choose the diffusion policy because it performs the best in practice.
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Figure 3: 3D Semantic Fields Visualization. We visualize 3D semantic fields in the scene, similar to Figure
6 in the main paper. For ours with DINOv2, object parts from different instances are highlighted consistently.
For example, shoe heads, book titles, and mug handles are highlighted in these scenes. In contrast, ours with
CLIP and ours with ViT fail to highlight object parts consistently. Instead, their heatmap distributes over the
scene and has no distinctions among object parts.

3.3 Ablation on Feature Extraction Backbone

Originally, we used DINOV? as the feature backbone [11]. To study the influence of different feature
backbones on performance, we replace DINOv2 with other feature backbones. Other than DINOv2,
CLIP and Vision Transformer (ViT) are two of the most common image feature extractors [12, 13].
Therefore, we replace DINOv2 with CLIP and ViT and compare their performance. First, we try to
qualitatively understand what the 3D semantic fields will look like with different feature backbones.
Second, we quantitatively show the performance of the whole diffusion policy pipeline when the
feature backbones are different.

Similar to Figure 6 in the main paper, we use the same 3D semantic field construction and visual-
ization pipeline with different feature backbones. We visualize the 3D semantic fields of different
object parts in Figure 3. We found that ours with DINOv2 can consistently highlight the object parts,
such as shoe heads, book titles, and mug handles, while ours with CLIP and ours with ViT fail to do
so. Without the capability to distinguish semantically meaningful parts of the object, ours with ViT
and ours with CLIP fail to generalize to unseen instances, distinguish geometric ambiguities, and
attend to subtle geometric details. This qualitative result justifies our usage of DINOv2 to generate
useful 3D semantic fields.

Table 3 shows our quantitative results, where the experiment process is the same as the main paper.
The table shows our method’s average success rate is 94%, which is the best among all methods. As
this table shows, ours with CLIP’s average success rate is 57%, and ours with ViT’s average success
rate is 55%. This result is close to ours without semantics (58%) as shown in Table 1. This indicates
that CLIP and ViT do not encode useful semantic information like object parts. In contrast, our
method can highlight parts of the object that are critical for the task’s success.

3.4 More Baselines

We compare with SORNet and DINOBot [14, 15]. We will describe how we compare our work with
these two baselines in our setting respectively in Section 3.4.1 and Section 3.4.2. Then we present
results and analyze them in Section 3.4.3.

3.4.1 SORNet

SORNet introduces an object-centric representation that can be generalized to objects unseen during
training. Specifically, SORNet can take in observation from more than one view, where depth is



Task Category Task Name Instances Ours Ours with CLIP  Ours with ViT
Hane Mu Seen 95% (19/20) 55% (11/20) 80% (16/20)
Sim &€ VMUE  Unseen 80% (16/20) 50% (10/20)  70% (14/20)
' Insert Pencil Seen 95% (19/20) 70% (14/20) 55% (11/20)
Unseen 90% (18/20) 45% (9/20) 30% (6/20)
Geo. Ambi Collect Knife Unseen 100% (10/10) 30% (3/10) 30% (3/10)
) ' Open Pen  Unseen 100% (10/10) 50% (5/10) 40% (4/10)
Geo. Details Place Can  Unseen 100% (10/10) 40% (4/10) 50% (5/10)
) Use Toothbrush  Unseen 90% (9/10) 50% (5/10) 50% (5/10)
Cat. Gen Align Shoes Unseen 100% (10/10) 90% (9/10) 40% (4/10)
) ’ Use Spoon  Unseen 100% (10/10) 100% (10/10) 90% (9/10)
Total (Unseen) 94% (131/140)  57% (80/140) 55% (77/140)

Table 3: Success Rate for Different Feature Backbones. The method was evaluated across eight
tasks and compared against different feature backbones. We use the average success rate as our
evaluation metric. Compared with ours with CLIP and ours with ViT, our method consistently
outperforms them. This demonstrates that DINOv2 could encode semantic information, such as
parts of object that are important for task completion.

optional. It also takes in canonical object views and outputs corresponding embedding for each
query object. For fair comparisons, we input RGBD observations from four viewpoints and one
canonical object view into SORNet and obtain one embedding. Then we input this embedding to
diffusion policy, the same as what did for our approach. We do not use pre-trained models provided
by SORNet, since the observation modality and training domain are very different. Instead, we train
the whole model from scratch.

3.4.2 DINOBot

DINOBot introduces a single-shot imitation learning framework that leverages visual features from
foundational vision models. They first record the key end-effector pose and corresponding RGBD
observations. Then they record a motion sequence. During testing, they will align current RGBD
observations with recorded key RGBD observations to make sure the end-effector has arrived at the
key pose. Then they will replay the motion sequence.

In our implementation, we choose one of our perspective views as the observation view. For the rest
of the implementation, we follow the DINOBot.

3.4.3 Results

As shown in Table 4, SORNet performs badly for both seen and unseen instances. As mentioned
by SORNet’s authors, SORNet needs to be trained on a large-scale dataset with diverse object ap-
pearance and scene layouts. Specifically, they trained SORNet on two datasets, which contain 405
training objects and 330 training objects respectively. However, we only assume access to a demon-
stration dataset collected over one or a handful of objects. SORNet cannot effectively extract useful
representation in this low-data regime, while our representation could generalize to unseen instances
given the same amount of data.

As shown in Table 4, DINOBot cannot accomplish the tasks and fails in both seen and unseen
scenarios. The reasons are twofold. First, DINOBot merely replays the recorded trajectory after the
6-DoF alignment, which limits its applicability in tasks that require adaptive adjustments based on
the positions and shapes of objects. Second, DINOBot has only tackled single-arm manipulation
tasks using a wrist-mounted camera, which restricts its extension to more complicated bimanual
tasks (e.g., pen opening, as we demonstrated using our method). In contrast, our method represents



Task Category Task Name Instances Ours SORNet [14] DINOBot [15]
Hane Mu Seen 95% (19/20) 0% (0/20) 0% (0/20)
Sim &€ VMUE  Unseen 80% (16/20) 0% (0/20) 0% (0/20)
' Insert Pencil Seen 95% (19/20) 0% (0/20) 0% (0/20)
Unseen 90% (18/20) 0% (0/20) 0% (0/20)
Geo. Ambi Collect Knife Unseen 100% (10/10) 10% (1/10) 0% (0/10)
) ) Open Pen  Unseen 100% (10/10) 0% (0/10) N/A% (N/A)
Geo. Details Place Can Unseen 100% (10/10) 20% (2/10) 0% (0/10)
) Use Toothbrush  Unseen 90% (9/10) 0% (0/10) 0% (0/10)
Cat. Gen Align Shoes Unseen 100% (10/10) 0% (0/10) 0% (0/10)
’ ’ Use Spoon  Unseen 100% (10/10) 40% (4/10) 0% (0/10)
Total (Unseen) 94% (131/140) 5% (7/140) 0% (0/130)

Table 4: Success Rate for Additional Representation and Imitation Learning Baselines. The
method was evaluated across eight tasks and compared with SORNet and DINOBot. We use the
average success rate as our evaluation metric. The low success rate of SORNet implies that it needs
large-scale data for pre-training, while we only assume access to demonstrations recorded in several
hours. DINOBot’s low success rate implies it is not as flexible as our method for action represen-
tation and task specification. There is no result for the opening pen task because of DINOBot’s
assumption of single-arm manipulation.

the action as a sequence of end-effector poses, which can be easily extended to a dual-arm setup and
accomplish a more diversified set of tasks.

In addition, we also analyze whether our se- <
mantic fields could carry desired semantic in-
formation, as shown in Figure 4. We ini-
tially sample 3D grid points in the workspace
and select the top 100 points with the highest LA
similarity score for each semantic field. For :
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3.5 t-SNE

the example shown in Figure 4, there are 500
points in total. Then, we query the descrip-

tor fields and obtain semantic features corre-
sponding to the selected points. We reduce the
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high-dimensional semantic features to a two-
dimensional plane using t-distributed stochas-
tic neighbor embedding (t-SNE). We observe
that all points are distinctly separated, and each
blob corresponds to one object part. This vi-
sualization shows that our semantic fields have
a clear semantic meaning for each channel,
which helps the policy to achieve category-
level generalization.
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Figure 4: t-SNE for Semantic Features with High
Similarity.  Points in similarity fields are selected
based on the top & similarity scores. We compute their
corresponding semantic features and project them into
two-dimensional space using t-SNE. It is clearly ob-
served that all features are clustered and separated from
each other. Each cluster corresponds to a feature that
has semantic meaning, such as mug rings and mug han-
dles.

3.6 Comparisons with Different RGBD Encoder

We also tried different RGBD encoders other than the standard encoder used for RGB. Specifically,
we tested RD3D [16] as a different RGBD encoder (DP+RD3D) and evaluated it on two simulation
tasks using the same dataset and task setup as the main paper. Our results are summarized in Ta-
ble 5. We found that DP+RD3D fails in both tasks. We hypothesize that this is because RD3D was
designed for object detection, which may not be particularly suitable for diffusion policy.
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Method Hang Mug (Unseen) Insert Pencil (Unseen) Total (Unseen)

DP 0% (0/20) 25% (5/20) 12.5% (5/40)
DP+RGBD 0% (0/20) 20% (4/20) 10% (4/40)
DP+RD3D 0% (0/20) 0% (0/20) 0% (0/40)
Ours w/o Semantics 85% (17/20) 40% (8/20) 62.5% (25/40)
Ours 80% (16/20) 90% (18/20) 85% (34/40)

Table 5: Success Rate for DP+RD3D [16]. DP+RD3D was evaluated across two simulation tasks
with the same setting as the main paper. We use the average success rate as our evaluation metric. We
found that DP+RD3D fails in both tasks. We hypothesize that this is because RD3D was designed
for object detection, which may not be particularly suitable for diffusion policy.

3.7 Comparisons with Semantic-Informed Encoder

Similar to our approach, we first extract DINOv2 feature maps from RGB and then build the seman-
tic map by comparing to reference features, the same as in our paper. We then append the semantic
map to the RGB and input it into the diffusion policy (DP+Semantic). Our results are summarized
in Table 6

Hang Mug (Unseen) Insert Pencil (Unseen) Total (Unseen)

DP 0% (0/20) 25% (5/20) 12.5% (5/40)
DP+RGBD 0% (0/20) 20% (4/20) 10% (4/40)

DP+Semantic 0% (0/20) 75% (15/20) 37.5% (15/40)
Ours w/o Semantics 85% (17/20) 40% (8/20) 62.5% (25/40)
Ours 80% (16/20) 90% (18/20) 85% (34/40)

Table 6: Success Rate for DP+Semantic. DP+Semantic was evaluated across two simulation tasks
with the same setting as the main paper. We use the average success rate as our evaluation metric.
We found that DP+Semantic performs better than DP, demonstrating that additional semantic infor-
mation can guide the diffusion policy to focus on object parts important for task success. But it still
performs worse than our approach.

We found that DP+Semantic performs better than DP, demonstrating that additional semantic in-
formation can guide the diffusion policy to focus on object parts important for task success. How-
ever, DP+Semantic still learns spurious correlations between RGB data and robotic actions, making
it sensitive to appearance variations when encountering unseen instances from the same category.
In contrast, our method utilizes 3D semantic fields that are robust to such variations and enable
category-level generalization of the diffusion policy.

3.8 Ablation on Different Views

We provide additional experiments of training policy with different numbers of views, and our results
are summarized in Table 7. We found that the performance of our method is not significantly affected
by the number of camera views.

4 Detailed Comparisons with Prior Works

 Functional Object-Oriented Network for Manipulation Learning [17]: This work proposes
a structured knowledge representation and generates motion sequences based on the repre-
sentation. While this work represents the motion sequence as motion harmonics, our work
is more flexible in action and task representation. In addition, this work does not show ex-
tensive real-world deployment results, while we focus more on the real-world deployment.

* Affordance Detection for Task-Specific Grasping Using Deep Learning [18]: This work
uses convolutional neural networks to detect object affordance, class, and orientation for
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Table 7:

Methods Hang Mug (Unseen) Pencil Insertion (Unseen)

1 View 85% (17/20) 90% (18/20)
2 Views 90% (18/20) 95% (19/20)
3 Views 75% (15/20) 85% (17/20)
4 Views 80% (16/20) 90% (18/20)
Total 82.5% (66/30) 90% (72/80)

Success Rate for Different Number of Views. This table illustrates the success rates of

our method with different numbers of views evaluated on two unseen tasks: Hang Mug and Pencil
Insertion. We found that the performance of our method is not significantly affected by the number
of camera views.

task-specific tasks. Although it shows generalization capabilities, it is still restricted to
grasping tasks. In contrast, our framework supports a wider range of tasks.

SORNet: Spatial Object-Centric Representations for Sequential Manipulation [14]: SOR-
Net proposes an object-centric representation from RGB observations. We note three ma-
jor differences from SORNet to our work. First, SORNet is object-centric, while ours is
scene-representation, which needs less prior information. Second, SORNet builds repre-
sentation from RGB, which makes it hard to generalize to novel domains, environments,
and backgrounds, but our 3D semantic fields show category-level generalization capabili-
ties. Lastly, through experiments, we found that SORNet might be better if pre-trained on
a large dataset. In our work, we only assume access to a demonstration dataset of one or
a handful of objects, while SORNet needs a larger dataset for pre-training to have a good
performance.

Manipulation-Oriented Object Perception in Clutter Through Affordance Coordinate
Frames [19]: This work introduces the Affordance Coordinate Frame (ACF) for category-
level pose estimation. It shows impressive category-level generalization capabilities. How-
ever, this work uses pre-defined motion primitives (grasp, pour, stir) for manipulation,
which limits applicable tasks. In contrast, we do not assume any prior motion primitives,
which is more flexible for action representation.

StructDiffusion: Object-Centric Diffusion for Semantic Rearrangement of Novel Ob-
Jjects [20]: This work uses a diffusion model and object-centric transformer to construct
goal structures given current point clouds and language inputs. They mainly focus on pick-
ing and placing tasks using modular methods, including the grasping planner and motion
planner. Their modular method might not transfer to other tasks and other types of objects
like deformable objects and granular objects easily. Without assumptions for target tasks
and objects, our framework is flexible for object types and task specifications.

A Survey of Semantic Reasoning Frameworks for Robotic Systems [21]: We position our
work as instance-level semantic reasoning according to this survey. In our work, we pro-
pose 3D semantic fields, which can differentiate the object parts using foundational vision
models.

Learning Generalizable Feature Fields for Mobile Manipulation [22]: GeFF is a concurrent
work using Generelizable NeRF for mobile manipulation [23]. There are two major differ-
ences between our work and GeFF. First, we do not distill feature fields from foundational
vision models to avoid the loss in generalization capabilities. Second, GeFF uses open-
push-close action sequences to accomplish tasks, while our policy predicts the end-effector
trajectory, which is more flexible.

Evaluating Robustness of Visual Representations for Object Assembly Task Requiring
Spatio-Geometrical Reasoning [24]: This work mainly focuses on object assembly tasks
by evaluating the robustness of visual representations from RGB observations. First, since
RGB observation is sensitive to environment and instance variance, our method proposes
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to use 3D semantic fields to help the generalization of diffusion policy. Second, instead of
focusing on assembly tasks, our framework is tested on a broader set of tasks.

* You Only Demonstrate Once: Category-Level Manipulation from Single Visual Demonstra-
tion [25]: You Only Demonstrate Once introduces the category-level generalizable last-
inch policy using model-free pose estimation and trajectory transformation. There are two
major differences. First, their behavior cloning algorithm is replaying the trajectory using
the object’s pose, which limits their applicability to tasks requiring adaptive adjustments
based on the positions and shapes of objects. In contrast, we represent the trajectory as a
sequence of end-effector poses, which is more flexible for task specification. In addition,
they assume the object is rigidly attached to the end-effector, which is not applicable to
some tasks like pushing the shoe. In summary, many of our tasks are not doable using this
framework.

* On the Effectiveness of Retrieval, Alignment, and Replay in Manipulation and DINOBot:
Robot Manipulation via Retrieval and Alignment with Vision Foundation Models [15, 26]:
This line of work from the set of authors proposes a generalizable imitation learning frame-
work, following phases of retrieval, alignment, and replay. DINOBot is the latest work
enhancing the prior work using vision foundation models. First, DINOBot merely replays
the recorded trajectory after the 6-DoF alignment, which limits its applicability in tasks
that require adaptive adjustments based on the positions and shapes of objects. Second,
DINOBot has only tackled single-arm manipulation tasks using a wrist-mounted camera,
which restricts its extension to more complicated bimanual tasks (e.g., pen opening, as
we demonstrated using our method). In contrast, our method represents the action as a
sequence of end-effector poses, which can be easily extended to a dual-arm setup and ac-
complish a more diversified set of tasks.
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