Supplementary Materials for CodeDiffuser

Guang Yin®* Yitong Li**
Kunimatsu Hashimoto?

1Columbia University 2Toyota Research Institute

Yixuan Wang'*
Huan Zhang?
3University of Illinois Urbana-Champaign

Dale McConachie? Paarth Shah?
Katherine Liu? Yunzhu Li!
4Tsinghua University

https://robopil.github.io/code-diffuser/

I. METHOD
A. Clustering and Segmentation

For clustering, we first leverage DINO features to measure
the similarity between the source feature and the features of
point cloud. A predefined threshold is used to filter attention
points based on the cosine similarity value. To ensure uniform
point density across different parts, we apply Furthest Point
Sampling (FPS) to downsample the point cloud to 8,000
points. Next, we employ a density-based clustering method
on the selected attention points. Specifically, the clustering
algorithm groups points into clusters based on a predefined
L2-norm distance threshold—0.1 for packing a battery and
0.15 for hanging a mug.

We found DBSCAN performs robustly in our experiments,
as evidenced by the 3D attention benchmark (Table [[) and the
failure breakdown analysis (Main Figure 9). Additionally, due
to modular design, it can be easily replaced with a more robust
alternative as needed.

For methods utilizing 2D attention, we project the 3D point
cloud with attention onto 2D images, generating a binary mask
where attention regions are marked as 1 and non-attention
regions as 0. Due to the sparse and fragmented nature of
the initial projection, we apply dilation to refine the mask,
ensuring a more cohesive and continuous attention region.

B. Spatial Selection through CodeGen

We utilize code as an interface to detect the target ob-
ject based on spatial instructions, such as “the rightmost
mug.” Given a language instruction, the LLM generates the
corresponding code and leverages NumPy APIs to analyze
the spatial relationships between attention clusters, ultimately
identifying the specified target.

For example, if the language instruction is “Pick a battery
into the slot on the middle columns.”, the generated code
would be:

compose API summary
INSTRUCTION
Pick a battery into the slot on the middle

columns.
RESPONSE
Determine target object, battery
battery = self.detect ("battery") [0] ["pointer"]

*Denotes equal contribution.

Determine target object, the slot on the

middle column

Detect slots
slot_list = self.detect("slot")
slot_centroid_list = []
for obj in slot_list:
slot_centroid_list.append(np.mean(obj["pcd"],
axis=0) [np.newaxis, :])
slot_centroid_numpy =
np.concatenate (slot_centroid_list, axis=0)
Extract x coordinate
slot_x = slot_centroid_numpyl:, 0]
determine right or left

use x to

The slot with the max x value and the min x
value
slot_max_x =
slot_min_x =

np.max (slot_x)
np.min (slot_x)

Determine the x coordinate range for the
middle column
middle_x_threshold =

slot_min_x) / 2

(slot_max_x +

Find the index of the slot closest to the
middle_x_threshold

tgt_slot_idx = np.argmin (np.abs(slot_x -
middle_x_threshold))

Extract the points of the target slot

tgt_slot = slot_list[tgt_slot_idx] ["pointer"]
output_var = [battery, tgt_slot]

,,,,,,,,,,,,,

detection API summary

PROMPT

['battery’, ’'slot’]

battery

RESPONSE

battery_list = self.get_obj(’battery’)
output_var = battery_list

detection API summary
PROMPT
["battery’,
slot

#
#
"slot’]
#

RESPONSE

slot_list = self.get_obj(’slot’)
output_var = slot_list

https://robopil.github.io/code-diffuser/

C. Visual Selection through VLM

We employ a Vision-Language Model (VLM) to detect the
target object based on visual instructions such as the orange
book.” When visual detection is required, the generated code
can invoke a predefined API, find instance in category, which
annotates instances in RGB images with corresponding labels.
The VLM then interprets the language instruction and provides
the index of the matching label as shown in Main Figure 4.
For example, if the language instruction is “I want to use the
blue mug to drink some water. Put away the other one on a
branch.”, the generated code would be:

compose API summary

INSTRUCTION

I want to use the blue mug to drink some
water. Put away the other one on a branch.

RESPONSE

determine target object,
blue)

blue_mug = self.detect ("blue mug") [0]

mug_list = self.detect ("mug")

tgt_mug_list = []

for mug in mug_list:

if mug != blue_mug:

tgt_mug_list.append (mug)

tgt_mug = tgt_mug_list[0] ["pointer"]

the other mug (not

determine target object, branch

branch = self.detect ("branch") [0] ["pointer"]
output_var = [tgt_mug, branch]
detection API summary

PROMPT

['mug’,
blue mug

"branch’]

RESPONSE

mug_list =

tgt_idx =
self.find_instance_in_category(instance =
"blue mug’, category = 'mug’)

tgt_mug = []

self.get_obj('mug’)

for i in tgt_idx:
tgt_mug.append (mug_list[i])

output_var = tgt_mug

,,,,,,,,,,,,,

find_instance_in_category API summary

PROMPT

blue mug

RESPONSE

The object labeled with index 1 is a blue
mug.

1

,,,,,,,,,,,,,

detection API summary

PROMPT

['mug’, ’"branch’]

mug

RESPONSE

mug_list = self.get_obj('mug’)
output_var = mug_list

detection API summary

PROMPT

['mug’, ’'branch’]

branch

RESPONSE
branch_list =
output_var =

self.get_obj(’branch’)
branch_list

II. ADDITIONAL 3D ATTENTION EVALUATION

In addition, we build a benchmark in the simulation to quan-
titatively evaluate the language-to-3D attention pipeline, which
can automatically generate scenes, prompts, and corresponding
ground truth 3D attention maps. We measure the distance
between ground truth 3D attention maps and generated 3D
attention maps, and a test is considered successful if they
are close enough. Specifically, we use Chamfer Distance to
evaluate alignment between GT and generated 3D attention.
A threshold of 0.005 is used to decide spatial proximity. In
this experiment, we compare with the following two baselines:
o G-SAM2: We directly prompt Grounded-SAM?2 to segment

out the object to attend to.

o G-SAM2+GPT-40: We first segment out objects for each
object category using Grounded-SAM?2 and then ask GPT4o
to select the object instance.

Scene Ours G-SAM2 G-SAM2+GPT-40
Hang Mug 97/100 0/100 0/100
Pack Battery ~ 94/100 0/100 0/100
Total 191/200 0/100 0/100

Table I: Additonal Attention Quantitative Evaluation. We quan-
titatively evaluate the pipeline from language instructions to 3D at-
tention maps in simulation. Our results demonstrate that our pipeline
effectively attends to task-relevant areas, whereas baseline methods
fail due to their limited fine-grained visual-semantic reasoning and
spatial understanding capabilities.

Table [summarizes our quantitative evaluation of the
pipeline from language to attention. We find that our method
outperforms the baselines, as it leverages the powerful visu-
alsemantic understanding capabilities of VLMs and benefits
from explicit spatial relation reasoning using 3D representa-
tions. In contrast, Grounded-SAM?2 lacks the capability for
fine-grained semantic reasoning, such as detecting branches
and slot locations, resulting in zero success. Qualitative com-
parisons between our method and G-SAM?2 are shown in

Figure [I}
III. SIMULATION EXPERIMENTS
A. Training Data Generation and Labeling

In this project, we conduct experiments in Sapien using
two scenarios: packing batteries and hanging mugs. We use
scripted policies to generate demonstrations. During data gen-
eration, after defining the task scenes, we randomly select the

G-SAM2

Ours

Fine-Grained
Detection
Coarse
Detection
Only

_0__1
U
_0_0_(

Et@ug

Fig. 1: Comparisons with Baselines on 3D Attention. Compared
to G-SAM2, our method allows for more fine-grained visual under-
standing, such as detecting slots and branches.

target objects (e.g., a battery and slot, or a mug and branch)
and generate the corresponding manipulation trajectories. At
the same time, we log the ground truth attention locations for
future labeling. This includes details such as which object to
manipulate and where to place it.

For the labeling process, we use DINO features to query
the attention point cloud, cluster the points into distinct parts,
and identify the target part based on the ground truth location
information. For methods involving 2D attention, we generate
a point cloud with attention points and project it onto images
as segmentation masks.

B. Evaluation Benchmark with Language Instruction

For system evaluation, the main objective is to assess
whether the policy can accurately perform tasks based on
language instructions. The system’s inputs for evaluation in-
clude visual observations and language prompts. Specifically,
the visual observations are RGBD images captured from five
different viewpoints, while the prompts are generated based

on the task scene. These prompts are then validated using a
rule-based approach to ensure their feasibility and coherence.
Additionally, we define success criteria derived from the given
prompts and task scenes. To be considered successful, the
system must meet these criteria within a predefined time limit
(e.g., 240 frames).

The scenario generation process can be broken down into
several parts.

o Descriptive Components Selection and Instruction Gen-
eration: Descriptive components (e.g., “blue mug,” “furthest
branch” for hanging a mug, “slot in the first row,” “left
battery” for packing a battery) are randomly sampled from
a predefined library. Once the descriptive components are
selected, we randomly choose a template from an instruc-
tion library and combine it to form a complete language
instruction. A more detailed explanation can be found in
the next subsection.

Task Scene Randomization and Matching: Using the
selected descriptive components, we generate task scenes
in Sapiens (e.g., initial position, pose, number, and color
of batteries). It is crucial that the correlation between the
physical scenes and the prompts is accurate. For example,
if the prompt is “hang a blue mug,” there should be at
least one blue mug on the table. Similarly, if the prompt
is “put the battery into the slot in the first row,” at least one
slot in the first row must be available. We use a predefined
check function, along with the descriptive components, to
ensure that the generated scene matches the instructions. If
the scene does not meet the requirements, a new one is
generated and checked again. This process continues until
the generated scene satisfies all conditions.

Success Criteria Specification: We can also obtain the
indices of objects using a predefined extraction function,
which works in conjunction with the descriptive compo-
nents. This function is designed to identify target objects.
For example, the blue_mug_extract function retrieves the
indices of all blue mugs on the table. By using this func-
tion, we can determine the positions of the target objects
referenced in the instructions and get access to their poses
through API defined in Sapiens.

In this way, we can automatically evaluate whether the pol-
icy executes successfully based on our language instructions,
which are also generated without manual effort. The detailed
criteria are listed below:

« Pack Batteries: The reward function determines success
based on three criteria: the object’s horizontal distance from
the target must be less than 0.03 units, the object must be
aligned with the global Z-axis (i.e., nearly upright) with
a product value greater than 0.99, and the object’s height
must be less than 0.009 units. If all these conditions are met
for any object-target pair, the function returns a reward of
1.0, indicating success; otherwise, it returns 0.0, indicating
failure.

« Hang Mugs: The reward function evaluates success based
on the position of an object relative to a target. Specifically,

the object’s X-coordinate must be within 0.05 units of the

target branch’s X-coordinate, and the object’s Z-coordinate

must be between the target branch’s Z-coordinate and a

lower offset of 0.1 units below it. If both conditions are

met for any object-target pair, the function returns a reward
of 1.0, indicating success. If no pair satisfies these criteria,
the function returns 0.0, indicating failure.

The object-target pairs are determined based on the lan-
guage instructions, specifying which pairs meet the require-
ments of the given instruction. The process for this determi-
nation is explained in Success Criteria Specification.

C. Details of Language Instruction Generation

The first step in generating language instructions is sampling
descriptive components. These are object-centric descriptions,
such as “blue mug”, “ front-most battery”, “furthest branch”.
We consider both spatial information (e.g., “furthest”, “right’)
and visual information (e.g., “red”, “white”) when selecting
these components. The libraries for hanging mugs and packing
batteries are listed below:

o Hang Mugs: left-most mug, right-most mug, white mug, red
mug, blue mug, green mug, furthest branch, right-topmost
branch, left-topmost branch and right-middle branch.

o Pack Batteries: left-most battery, right-most battery, front-
most battery, back-most battery, furthest slot, nearest slot,
slot on the front-most row, slot on the middle row, slot on
the back-most row, slot on left column, slot on the middle
columns and slot on the right column.

Once the descriptive components are determined, we ran-
domly select a template from an instruction library and com-
bine it to form a complete language instruction. Below is the
full list of templates for hanging mugs:

« No Slackness:

"Hang the {mug} on the {branch}.”

"I want to use the {other_mug} to drink some water. Put

away the other one on the {branch}.”

"I want to use the {other_mug} to drink some water. Put

away the other mug on the {branch}.”

“I will use the {other_mug} to drink some water. Hang the

{mug} on the {branch}.”

"Hang the {mug} on the {other_branch}. Sorry, the

{branch}.”

"There are two mugs. Keep {other_mug} on the table, put

the other one on {branch}.”

"I will not use this {mug} now. Hang it on {branch}”

”Put Bob’s mug, the {mug}, on the {branch}.”

« Mug Slackness:

”Hang a mug on the {branch}.”

”Put away a mug on the {branch}.”

"Hang a mug on the {other_branch}. Sorry, the {branch}.”
« Branch Slackness:

“Hang the {mug} on a branch.”

"I want to use the {other_mug} to drink some water. Put

away the other one on a branch.”

“I want to use the {other_mug} to drink some water. Put

away the other mug on a branch.”

”I will use the {other_mug} to drink some water. Hang the
{mug} on a branch.”
"Hang the {other_mug} on a branch. Sorry, the {mug}.”
"There are two mugs. Keep {other_mug} on the table, put
the other one on a branch.”
”I will not use this {mug} now. Hang it on a branch”
”Put Bob’s mug, the {mug}, on the a branch.”

« Both Slackness:
"Hang a mug on a branch.”
“There are two mugs. Keep one on the table, put the other
one on a branch.”
This is the full list of template for packing batteries:

« No Slackness:
”Pick the {battery} outside the crate into the {slot}.”
[need to use the {other_battery}. Put away the {battery}
outside the box in the {slot}.”
"The desk is too messy. Put away the {battery} outside the
box into the {slot}.”
”I want to put the {battery} outside the crate into the
{other_slot}, oh sorry, the {slot}.”
”You should make the table more tidy, Just start from putting
the {battery} outside the crate into the {slot}.”
« Battery Slackness:
"Pick a battery outside the crate into the {slot}.”
"The desk is too messy. Put away a battery outside the crate
into the {slot}.”
[want to put a battery outside the crate into the
{other_slot}, oh sorry, the {slot}.”
”[want to put a battery outside the crate into the {slot}.”
« Slot Slackness:
”Pick the {battery} outside the crate into a slot.”
"I need to use the {other_battery}. Put away the {battery}
outside the crate in a slot.”
"The desk is too messy. Put away the {battery} outside the
crate into a slot.”
”I want to put the {other_battery} into a slot, oh sorry, the
{battery} outside the crate.”
”You should make the table more tidy, Just start from putting
the {battery} outside the crate into a slot.”
« Both Slackness:
”Put a battery outside the crate on a slot.”
“There are some batteries outside the crate. Put one into a
slot.”

D. Baseline Details

e Ours with 2D Attention: Instead of mapping the multi-
view RGBD observation into 3D space, this baseline uses a
2D attention mechanism to segment objects of interest. The
masked observation is then input into visuomotor policy.
Specifically, we first obtain 3d point cloud from images and
ground attention on it through our proposed pipeline. Then
the 3d attention is projected onto 2d images in the format of
segmentation mask, where attention region is 1 and none-
attention region is 0. We use attention masks to multiply
corresponding RGB images. We train diffusion policy based
on this observation. The total training epoch number is 360

and the learning rate scheduler is cosine with 600 epochs
maximum limitation. The training batchsize is 64.

¢ Ours without Residual Connection: In our policy, we in-
clude a residual connection in PointNet++ for visual feature
extraction. This baseline ablates the residual connection to
evaluate its contribution to performance. We train diffusion
policy based on typical 3d point cloud with 3d attention
as ours. The total training epoch number is 360 and the
learning rate scheduler is cosine with 600 epochs maximum
limitation. The training batchsize is 64.

o Lang-DP (RGB): This baseline extends DP (RGB) by
conditioning the policy on language using a frozen CLIP
encoder. The extracted language features are concatenated
with visual features to condition the diffusion policy. The
initial embedding dimension is 1536, which is reduced into
128 after processed through a linear layer. We train diffusion
policy based on RGB images and textual embedding. The
total training epoch number is 360 and the learning rate
scheduler is cosine with 600 epochs maximum limitation.
The training batchsize is 64.

« Lang-DP (PCD): Similar to Lang-DP (RGB), this baseline
adds language conditioning to DP (PCD) using a CLIP-
based language encoder. The initial embedding dimension
is 1536, which is reduced into 128 after processed through
a linear layer. We train diffusion policy based on 3d
point cloud without attention, but with RGB channel. RGB
information should be accessible for language reasoning,
especially for visual reasoning such as “blue mug”. The
total training epoch number is 360 and the learning rate
scheduler is cosine with 600 epochs maximum limitation.
The training batchsize is 64.

o Lang-ACT: This baseline augments the vanilla ACT frame-
work with language features, similar to Lang-DP. For
language embedding, the initial embedding dimension is
1536, which is reduced into 128 after processed through
a linear layer. We regard it as an additional token, which
are processed similarly as RGB image tokens. The total
training epoch number is 540, where we find ACT will show
better performance with a bigger epochs number. For fair
comparison, we take the advantages of all methods. The
learning rate scheduler is constant. The training batchsize is
64.

o Lang-ACT with 3D Attention: Unlike the vanilla ACT,
which uses multi-view RGB observations, this baseline
inputs 3D attention maps into Lang-ACT to assess whether
the attention module consistently improves the performance
of base imitation learning algorithms. The total training
epoch number is 540, where we find ACT will show better
performance with a bigger epochs number and the learning
rate scheduler is constant. The training batchsize is 64.

E. Single vs. Recursive VLM Calls

While we can use a single VLM call, we choose the
recursive approach to leverage the modular design for problem
decomposition. To ablate this design choice, we evaluated the
generated 3D attention map by single VLM call, following the

1.0 — DP (RGB)
0.8 1 68/;]00 67/:]00
1 o
3 D
$0.6 1
e« 71/100 .
§ . 48/100 [A;ddltlor.‘lal
30.41 atapoint
>
n -- 28/100
0.2 1
---14/100
O.Og --- 4/100
3060120180 360 540 1000
Demo

Fig. 2: Scaling Plot. We increase the number of demonstrations to
1000 and observe the performance plateaus.

experiment in Section IV.C and Table [I} We observed that the
success rate drops from 94% and 97% to 90% and 91%. We
will add this to the revised paper. Second, recursive calls are
also standard in existing works [[1]].

F. Scaling Plot

To further demonstrate that the scaling plot (Fig. 4) for
DP (RGB) is saturated, we increased the number of demon-
strations to 1,000 and performed the same evaluation. The
performance plateaued, confirming saturation (Fig. [2).

IV. REAL-WORLD EXPERIMENTS
A. Training Data Generation

For the real-world experiment, datasets are collected, and
policies are evaluated on Aloha [2] for three different tasks:
packing a battery, hanging a mug, and stowing a book. The
same dataset generation logic used in training applies to real
experiments, but with several key differences. In the real
experiment setup, there are five cameras: four positioned at
each top corner and one at the center on top.

For data generation, the first step is to sample the required
number of initial configurations for training demonstrations.
According to predefined randomness—for example, the mug’s
position follows a uniform distribution within a fixed area—a
program generates two output files: (1) a visualization image
that helps the operator reset the scene before and after each
demonstration as shown in Figure [3] and (2) a YAML script
that describes the scene in a structured format, which is
used for instruction generation. The same program is used to
generate initial configurations for evaluation. During instruc-
tion generation, the instruction generator produces instructions
based on the YAML scene description file and an instruction
template file.

For labeling, we use an intuitive GUI labeling tool that
allows the operator to quickly select objects with attention. The
labeling tool for the packing battery and hanging mug tasks
projects the point cloud of the entire scene in a top-down view.

Fooo+ A
o 0 ol
+ A > Y
|00 : |
:
z 5 @
& i N : z
' 2 = T
00 YA
3
o+

st +

o N

Fig. 3: Initial Configuration Visualization. Initial configuration examples are generated by a program for real experiments. The leftmost
visualization image corresponds to the packing a battery task, where orange circles represent batteries, and green circles indicate the target
battery and target slot. The middle image represents the hanging a mug task. Circles of different colors correspond to mugs of the same
color, while blue lines within the circles indicate the handle angles of each mug. The label “Right” signifies that the specified mug should
be picked up and placed on the right branch. The cross markers on the pad image have exact corresponding locations to the cross markers
on the real pad. This facilitates the operator in quickly identifying the relative positions of objects. Finally, the rightmost image corresponds
to the stowing a book task, where books with green boundaries indicate the target book to be picked and the designated slot for placement.

. A
. 5 i

>
Fig. 4: Dataset labeling interface. The left interface corresponds to the packing a battery task, while the middle interface is for the hanging

a mug task. In both tasks, the target objects are highlighted in orange. The right interface represents the stowing a book task, where the
target objects are highlighted with green boundaries. The operator only needs to move the cursor close to the target object and click to select

it. Clicking the selected object again will deselect it.

However, this approach is not suitable for the stowing book
task because the books are placed too close together, making
the top-down view cluttered. Instead, we project the point
cloud from the perspective of one of the cameras, allowing
the operator to directly select objects within the camera’s view.
The labeling interfaces for each task are shown in Figure [

B. Task Design

We carefully design each task to be complex enough to
evaluate the effectiveness of our pipeline while ensuring an
appropriate level of randomness, allowing the low-level policy
to converge with a limited number of human demonstrations.
The randomness visualization is shown in Figure [3]

a) Packing a Battery: In this task, a crate with 12 slots
is arranged in 3 rows and 4 columns. In front of the crate, a
random number of batteries, ranging from 1 to 3, are randomly
placed on an orange pad. Additionally, some batteries may
already be positioned inside the crate. The goal of the task is
to place a battery on the pad into a slot according to a given
linguistic instruction.

We define four types of instructions based on the level of
specificity: no slackness, battery slackness, slot slackness,
and both slackness.

« No Slackness: Both the battery and the slot are explicitly
specified. For example, “Put the leftmost battery into the slot
in the back row.” The task is only considered successful if
the specified battery is placed into the designated slot.

« Battery Slackness: Only the slot is explicitly specified. For
example, “Place a battery into the slot in the right column.”
Any battery can be selected, but it must be placed in the
designated slot for the task to be considered successful.

« Slot Slackness: Only the battery is explicitly specified. For
example, “I need to use the leftmost battery. Put away the
middle battery in a slot.” The specified battery must be
picked up, but it can be placed in any available slot for
the task to be considered successful.

« Both Slackness: Neither the battery nor the slot is explicitly
specified. For example, “There are some batteries. Put one
into a slot.” In this case, placing any battery into any slot
is considered successful.

The instruction types are randomly selected, and the instruc-
tions are generated using the instruction generator mentioned
earlier.

b) Hanging a Mug: The experiment scene consists of a
mug tree with four branches (the rear branch is not used) and
two mugs randomly placed on a white pad. The angle of each
mug handle ranges from —30° to 30°. Each mug has a color
randomly selected from red, blue, or green, ensuring that no
two mugs on the pad share the same color. The goal of this
task is to pick up a mug and place it on a branch according
to a given linguistic instruction.

We define four types of instructions based on the level of
specificity: no slackness, mug slackness, branch slackness,
and both slackness.

Fig. 5: Initial Configuration Overlay. The randomness for each task is visualized as an overlay of initial configurations.

« No Slackness: Both the mug and the branch are explicitly
specified. For example, “Put Bob’s mug, the red mug, on
the top branch.” The task is only considered successful if
the specified mug is placed on the designated branch.

« Mug Slackness: Only the branch is explicitly specified. For
example, “Put away a mug on the right branch.” Any mug
can be selected, but it must be placed on the designated
branch for the task to be considered successful.

« Branch Slackness: Only the mug is explicitly specified. For
example, “Hang the green mug on a branch. Sorry, the blue
mug.” The specified mug must be picked up, but it can be
placed on any available branch for the task to be considered
successful.

« Both Slackness: Neither the mug nor the branch is explicitly
specified. For example, “Hang a mug on a branch.” In
this case, placing any mug on any branch is considered
successful.

c) Stowing a Book: A fixed number of books are placed
on the bookshelf, with 1 to 2 of them tilted, creating 2 to 4
potential slots for stowing. Except for the 4 large books on the
sides of the shelf, the order of the other books are randomized.
There is also another randomly positioned book on a orange
pad for picking. The goal of this task is to pick up the book
on pad and stow it into a slot in the book shelf according to
a given linguistic instruction.
We define three types of instructions based on the level of
specificity: no slackness, side slackness, and range slackness.

« No Slackness: The slot is explicitly specified. For example,
“Place the front-most book so it sits directly next to DUBAI
on the right side.” The task is only considered successful if
the book on the pad is stowed in the designated slot.

« Side Slackness: The book should be placed on the specified
side of the specified book. For example, “Ensure LOST
KINGDOMS is shelved on the orange book’s right side.
Sorry, the left side.”

« Range Slackness: The target slot is between two specified
books. For example, “Put the Neo’s book, Istanbul, onto the
shelf so that it is between Urbanlike and the black book.”

C. Baseline Details

« Lang-DP (PCD with color): The architecture of this base-
line is essentially the same as Lang-DP (PCD) in the simula-
tion experiments. The only difference is that the observation
includes not only the point cloud of the scene but also
additional RGB color channels for each point. In other
words, each point consists of three channels representing its

spatial location and three additional channels representing
its color.

« DP (PCD): It is similar to the Lang-DP (PCD) baseline in
the simulation experiments. However, it can only observe
raw point cloud without any hint from language.

o Lang-DP (RGB): It is the same as the Lang-DP (RGB)
used in the simulation experiments.

V. COMPARISONS WITH VOXPOSER

VoxPoser relies on off-the-shelf motion planners to execute
low-level skills [I] and assumes simplified dynamics. For
instance, once an object is grasped, it is treated as rigidly
attached to the end-effector. As a result, VoxPoser is limited
in handling scenarios involving complex dynamics or contact-
rich interactions.

In contrast, many of the tasks in our work—such as book
stowing—involve multi-object interactions and complex con-
tact dynamics. As illustrated in Figure [prior work assumes
an empty slot for book insertion. In our task setting, however,
the robot must push adjacent books aside and squeeze out
space—capabilities made possible by learning visuomotor
policies from demonstrations.

Compact space requiring

Large empty space for insertion
\) multi-object interaction (i.e., ‘

push aside and create space)

(a) ReKep Stowing Book

(B) Our Stowing Book

Fig. 6: Experiment Setup Comparison. ReKep’s setup assumes an
empty slot for book insertion, whereas our setup requires complex
multi-object interaction to push books aside and create space.

We also conduct additional experiments in simulation, with
example rollouts shown in Figure [7] Since VoxPoser relies on
a pre-trained grasp planner, it may fail in scenarios that are
not well-supported in the training data.

REFERENCES

[1] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu
Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable
3d value maps for robotic manipulation with language

- Failed |
Grasping

o~ 4

Hanging Mug

Packing battery

Fig. 7: VoxPoser Rollout Examples. VoxPoser rollouts in our
simulation environments demonstrate that VoxPoser fails to grasp the
target objects.

models. In Conference on Robot Learning, pages 540-
562. PMLR, 2023.

[2] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. arXiv preprint arXiv:2304.13705,
2023.

	Method
	Clustering and Segmentation
	Spatial Selection through CodeGen
	Visual Selection through VLM

	Additional 3D Attention Evaluation
	Simulation Experiments
	Training Data Generation and Labeling
	Evaluation Benchmark with Language Instruction
	Details of Language Instruction Generation
	Baseline Details
	Single vs. Recursive VLM Calls
	Scaling Plot

	Real-World Experiments
	Training Data Generation
	Task Design
	Baseline Details

	Comparisons with VoxPoser

