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Abstract: Scene representation is a crucial design choice in robotic manipulation
systems. An ideal representation is expected to be 3D, dynamic, and semantic to
meet the demands of diverse manipulation tasks. However, previous works often
lack all three properties simultaneously. In this work, we introduce D3Fields—
dynamic 3D descriptor fields. These fields are implicit 3D representations that
take in 3D points and output semantic features and instance masks. They can also
capture the dynamics of the underlying 3D environments. Specifically, we project
arbitrary 3D points in the workspace onto multi-view 2D visual observations and
interpolate features derived from visual foundational models. The resulting fused
descriptor fields allow for flexible goal specifications using 2D images with var-
ied contexts, styles, and instances. To evaluate the effectiveness of these descriptor
fields, we apply our representation to rearrangement tasks in a zero-shot manner.
Through extensive evaluation in real worlds and simulations, we demonstrate that
D3Fields are effective for zero-shot generalizable rearrangement tasks. We also
compare D3Fields with state-of-the-art implicit 3D representations and show sig-
nificant improvements in effectiveness and efficiency. Project Page
Keywords: Implicit 3D Representation, Visual Foundational Model, Zero-Shot
Generalization, Robotic Manipulation
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Figure 1: D3Fields Representation and Application to Zero-Shot Rearrangement Tasks. D3Fields take in
multi-view RGBD images and encode semantic features and instance masks using foundational models. The
descriptor fields visualized in the bottom left using Principal Component Analysis (PCA) demonstrate consis-
tent features across instances. We use our representation for rearrangement tasks given 2D goal images with
diverse instances and styles in a zero-shot manner. We address pick-and-place tasks such as shoe organization
and tasks requiring dynamic modeling like collecting debris. We also show that our framework can accomplish
3D manipulation and compositional task specification in the table organization task.
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1 Introduction

The choice of scene representation is essential in robotic systems. An ideal representation is ex-
pected to be simultaneously 3D, dynamic, and semantic to meet the needs of various robotic ma-
nipulation tasks in our daily lives. However, previous research on scene representations in robotics
often does not encompass all three properties. Some representations exist in 3D space [1–4], yet
they overlook semantic information. Others focus on dynamic modeling [5–8], but only consider
2D data, neglecting the role of 3D space. Some other works are limited by only considering semantic
information such as object instance and category [9–13].

In this work, we aim to satisfy all three criteria by introducing D3Fields, unified descriptor fields
that are 3D, dynamic, and semantic. Notably, D3Fields are implicit 3D representations rather
than explicit 3D representations like point clouds. D3Fields take arbitrary 3D coordinates as inputs
and output both geometric and semantic information corresponding to these positions. This includes
the instance mask, dense semantic features, and the signed distance to the object surface. Notably,
deriving these descriptor fields requires no training and is conducted in a zero-shot manner, utilizing
large visual foundation models and vision-language models (VLMs). In our approach, we employ
a set of advanced models. We first use Grounding-DINO [14], Segment Anything (SAM) [15],
XMem [16], and DINOv2 [17] to extract information from multi-view 2D RGB images. We then
project arbitrary 3D coordinates back to each camera, interpolate to compute representations from
each view, and fuse these data to derive the descriptors associated with these 3D positions, as shown
in Figure 1 (left). Leveraging the dense semantic features and instance mask of our representation,
we achieve robust tracking 3D points of the target object instances and train the dynamics mod-
els. These learned dynamics models can be incorporated into a Model-Predictive Control (MPC)
framework to plan for zero-shot generalizable rearrangement tasks.

Notably, the derived representations allow for zero-shot generalizable rearrangement tasks, where
the goal is specified by 2D images sourced from the Internet, smartphones, or even generated by
AI models. Such goal images have been challenging to manage with previous methods, because
they contain varied styles, contexts, and object instances different from the robot’s workspace. Our
proposed D3Fields can establish dense correspondences between the robot workspace and the target
configurations. Given correspondences, we can define our planning cost and use the MPC frame-
work with the learned dynamics model to derive actions for accomplishing tasks. Remarkably, this
task execution process does not require any further training, offering a highly flexible and convenient
interface for humans to specify tasks for the robots.

We evaluate our method across a wide range of robotic rearrangement tasks in a zero-shot man-
ner. These tasks include organizing shoes, collecting debris, and organizing office desks, as shown
in Figure 1 (right). Furthermore, we provide both quantitative and qualitative comparisons with
state-of-the-art implicit 3D representations to demonstrate the effectiveness and efficiency of our
approach [18, 19]. Through a detailed analysis of our D3Fields, we offer insights into the category-
level generalization capabilities and zero-shot rearrangement capabilities of our approach.

We make three major contributions. First, we introduce a novel representation, D3Fields, that is 3D,
semantic, and dynamic. Second, we present a novel and flexible goal specification method using
2D images that incorporate a wide range of styles, contexts, and instances. Third, our proposed
robotic manipulation framework supports a broad spectrum of zero-shot rearrangement tasks.

2 Related Works

Foundation Models for Robotics. Large Language Models (LLMs) have demonstrated promis-
ing reasoning capabilities for language. Robotics researchers have used LLMs to generate plans
for manipulation [20–23]. Yet, their perception modules fall short in simultaneously modeling the
3D geometry, semantics, and dynamics of objects. Meanwhile, visual foundation models, such as
SAM [15] and DINOv2 [17], have demonstrated impressive zero-shot generalization capabilities
across various vision tasks. While prior visual models, like Dense Object Nets [24], can encode
similar semantic information on a small-scale dataset, these foundational models show better gen-
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Figure 2: Overview of the Proposed Framework. (a) Multi-view RGBD observations are first processed
by foundation models to obtain the feature volume W The implicit function F takes in arbitrary 3D points
and outputs corresponding distance d, semantic features f , and instance probability p. (b) Through marching
cubes, we could reconstruct the mesh from the implicit signed distance function. Since our representation also
encodes instances masks and semantic features for evaluated 3D points, we can construct meshes for the mask
field and descriptor field as well. (c) Given a 2D goal image, we use foundation models to extract the descriptor
map. Then we correspond 3D features to 2D features and define the planning cost based on the correspondence.

eralization capabilities on various object categories and scenarios. However, their focus is primarily
on 2D vision tasks. Grounding these models in a dynamic 3D environment remains a challenge. Re-
cent works showcase how to ground these foundational models in the 3D world and help imitation
learning to generalize [25–28]. Still, these works do not emphasize dynamics learning or achieve
zero-shot generalization ability.

Neural Fields for Robotic Manipulation. There are various approaches leveraging neural fields
as a representation for robotic manipulation [29–42]. Among them, a series of works distilling
neural feature fields from visual foundation models are closely related to us [19, 43–46]. However,
they often require dense camera views for a quality field, which is expensive and impractical for
real-world scenarios. Also, distilled neural fields need retraining for new scenes, which is time-
consuming and inefficient. In contrast, our D3Fields require no training for new scenes and can
work with sparse views and dynamic settings. GNFactor and FeatureNeRF train neural feature
fields that can be conditioned on sparse views [18, 47]. However, such fields are often trained on a
small dataset, making them hard to generalize to novel instances and scenes, whereas our D3Fields
offer better generalization capability to new instances.

3 Method
3.1 Problem Formulation

We formulate our problem as a zero-shot rearrangement problem given a 2D goal image I and
RGBD images from multiple fixed viewpoints. We denote the workspace scene representation as
sgoal. Our goal is to find an optimal action sequence {at} to minimize the task objective:

min
{at}

c(sT , sgoal),

s.t. st = g(ot), st+1 = f(st, at),
(1)

where c(·, ·) is the cost function measuring the distance between the terminal representation sT and
the goal representation sgoal. Representation extraction function g(·) takes in the current multi-view
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RGBD observations ot and outputs the current representation st. f(·, ·) is the dynamics function that
predicts the future representation st+1, conditioned on the current representation st and action at.
The optimization aims to find the action sequence {at} that minimizes the cost function c(sT , sgoal).

Section 3.2 describes how to construct representation extraction function g(·). Section 3.3 elaborates
on the dynamics function f(·, ·). In Section 3.4, we show how to define the cost function c(·, ·).

3.2 D3Fields Representation
We assume that we can access multiple RGBD cameras with fixed viewpoints to construct D3Fields.
Multi-view RGBD observations are first fed into visual foundational models. Then we obtain 2D
feature volumes W . D3Fields are implicit functions F(·|W) defined as follows:

(d, f ,p) = F(x|W), (2)

where x can be an arbitrary 3D coordinate in the world frame, and (d, f ,p) corresponds to the signed
distance d ∈ R, the semantic descriptor f ∈ RN , and the instance probability distribution p ∈ RM

of M instances. M could be different across scenarios.

depth image surface

camera view ray

Figure 3: Notation Illustration. ri is the distance be-
tween a 3D point x and camera i, and r′i is the interpo-
lated depth from the depth image.

As an overview, our pipeline first projects x
into the image space of each camera. Then,
we can obtain the truncated depth difference
between projected depth and real depth read-
ing using Equation 3. Afterwards, we assign
weights to each viewpoint using Equation 4 and
interpolate the semantic features and instance
masks for each camera using Equation 5. Fi-
nally, we fuse features from all viewpoints to
obtain the final descriptor using Equation 6.

More concretely, we map an arbitrary 3D point x to the ith viewpoint’s image space. We denote the
projected pixel as ui and the distance from x to the ith viewpoint as ri (Figure 3). By interpolating
the ith viewpoint’s depth image Ri, we compute the corresponding depth reading from the depth
image as r′i = Ri[ui]. Then we can compute the truncated depth difference as

di = ri − r′i, d′i = max(min(di, µ),−µ), (3)

where µ specifies the truncation threshold for the Truncated Signed Distance Function (TSDF).
Given the truncated depth difference, we compute weights vi and wi for each viewpoint as

vi = 1di<µ, wi = exp

(
min (µ− |di|, 0)

µ

)
. (4)

Here is the explanation and design justification for each term.
vi: It represents the visibility of x in camera i. 1di<µ is the indicator function, which equals to

1 when di < µ and equals to 0 otherwise. When di = ri − r′i ≥ µ, x is behind the surface,
which means x is not visible in camera i and vi = 0.

wi: It is the weight for the ith viewpoint. Since we only have a confident estimation when x is
close to the surface, wi will decay as |di| increases. For x that is far away, wi degrades to 0.

Then we extract the semantic feature fi and instance mask pi in each viewpoint using

fi = Wf
i [ui], pi = Wp

i [ui], (5)

where DINOv2 [17] extracts the semantic feature volume Wf
i ∈ RH×W×N from RGB image.

Wp
i ∈ RH×W×M is the instance mask volume using Grounded-SAM [14, 15]. Note that pi is a

one-hot vector and already associated to ensure consistent instance indexing across different views.
Finally, we fuse the semantic features and instance masks from all K viewpoints using

d =

∑K
i=1 vid

′
i

δ +
∑K

i=1 vi
, f =

∑K
i=1 viwifi

δ +
∑K

i=1 vi
, p =

∑K
i=1 viwipi

δ +
∑K

i=1 vi
, (6)

where δ is a small number to avoid numeric issues. Since the process of projection, interpolation,
and fusion is differentiable, F(·|W) is differentiable when x is within the truncation threshold.
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3.3 Keypoints Tracking and Dynamics Learning
This section will present how to use the dynamic implicit 3D descriptor field F(·|W) to track key-
points and train dynamics. Without loss of generality, consider the tracking of a single object in-
stance st ∈ R3×ns . For clarity, we denote f and d from F(·|W) as Ff (·|W) and Fd(·|W). We
initialize the tracked keypoints s0 by sampling points close to the surface of the desired instance. To
track keypoints s0, we formulate the tracking problem as an optimization problem:

min
st+1

||Ff (s
t+1|W)−Ff (s

0|W)||2. (7)

As F(·|W) is differentiable, we could use a gradient-based optimizer. This method could be natu-
rally extended to multiple-instance scenarios. We found that relying solely on features for tracking
can be unstable. Therefore, if we know that the tracked object is rigid, we can apply additional rigid
constraints and distance regularization for more stable tracking.

Keypoint tracking enables dynamics model training on real data. We instantiate the dynamics model
f(·, ·) as graph neural networks (GNNs). We follow [48] to predict object dynamics. Please refer
to [48, 49] for more details on how to train the graph-based neural dynamics model. The trained
dynamics model will be used for trajectory optimization in Section 3.4.

3.4 Zero-Shot Generalizable Robotic Rearrangement
In this section, we will describe how to define the planning cost for our zero-shot rearrangement
framework. As shown in Figure 2 (c), we first find the correspondence between the descriptor fields
and goal image using Equation 8. Then we define the cost function c(·, ·) in Equation 9 to measure
the distance between the current state and the goal state. Finally, we optimize the action sequence
{at} to minimize the cost function as described in Section 3.1.

As described in Section 3.2, we initially sample points s0 ∈ R3×ns and obtain the associated
features f0 ∈ Rf×ns from the descriptor fields. We correspond s0 to the goal image Igoal to define
2D goal points sgoal ∈ R2×ns . Firstly, we compute the feature distance αij between ith pixel ui of
Igoal and jth sampled point of s0. Then we normalize αij using the softmax over the whole image
and obtain the weight βij . Lastly, we find the 2D point sgoal,j corresponding to the jth 3D point
using weighted sum. The computation process is summarized in the following:

αij = ||Wf
goal[ui]− f0j ||2, βij =

exp (−sαij)∑H×W
i=1 exp (−sαij)

, sgoal,j =

H×W∑
i=1

βijui, (8)

where Wf
goal is the feature volume extracted from Igoal using DINOv2, and s is the hyperparameter

to determine whether the heatmap βij is more smooth or concentrating. Although Equation. 8 only
shows a single instance case, it could be naturally extended to multiple instances by using instance
mask information.

Figure 4: Object Set in Our Experiments.
This figure shows diverse objects used in our
experiments, expanding over 10 object types.

Note that sgoal is in the image space, and the current
state representation, st is in 3D space. To reconcile
this discrepancy, we introduce a virtual reference cam-
era. We project st into the reference image and obtain
its 2D positions st2D. Consequently, we define the task
cost function as follows:

c(st, sgoal) = ||st2D − sgoal||22. (9)

Given the planning cost, we could use an MPC frame-
work to derive the action sequence {at} to minimize
the cost function. Specifically, we use MPPI to opti-
mize the action sequence [50]. At each time step, we
sample a set of action sequences and evaluate the cost
function. Then we update the action sequence using
the cost function and repeat the process until conver-
gence. This process will be repeated for each time step until the task is completed. More details
regarding the method are included in the supplementary material.
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Figure 5: Correspondence Qualitative Comparison. We select the pixel from the source image, obtain
the associated DINOv2 feature, and visualize the correspondence heatmap on the reconstructed mesh. (a) Our
representation reconstructs clear mesh and corresponds from the source image to semantically similar 3D areas.
(b) F3RM [19] could construct a reasonable mesh in the shoe scene and establish rough correspondences, but
fails in other scenes. (c) Only trained on a small dataset, FeatureNeRF [18] fails to generalize to novel scenes.
The reconstructed meshes are out of camera view, and the correspondence quality is poor.

4 Experiments
We design and organize our experiments to answer three key questions about our method: (1) How
efficient and effective our D3Fields is compared to existing neural representations? (2) What kind of
manipulation tasks can be enabled by our framework, and what type of generalization can it achieve?
(3) Why can our D3Fields enable these tasks and be generalizable?

4.1 Experiment Setup
In the real world, we use four RGBD cameras positioned at the corners of the workspace and employ
the Kinova® Gen3 arm for action execution. In the simulation, we use OmniGibson and the Fetch
robot for mobile manipulation tasks [51]. Our evaluations span various tasks, including organizing
shoes, collecting debris, tidying the table, and so on. More details are in the supplementary material.

4.2 D3Fields Efficiency and Effectiveness
In this section, we compare our D3Fields with two baselines, Distilled Feature Fields (F3RM) [19]
and FeatureNeRF [18]. For F3RM, we use four camera views as inputs and the DINOv2 features
as the supervision and stop the distillation process at 2,000 steps, which is defaulted by the au-
thors [19]. We first compare our D3Fields with F3RM and FeatureNeRF in terms of the correspon-
dence accuracy, as shown in Figure 5. We reconstruct the mesh from our 3D implicit representation
using marching cubes. We then select DINOv2 features from the source image and visualize the

6



In
iti

al
 S

ta
te

s
Fi

na
l S

ta
te

s

(Generalize to Novel Instances) (AI-Generated Goal Image with Varied Styles) (Generalize between Real and Sim)

Organize Utensils Organize Fruits Organize Shoes Organize Food (sim) Organize Utensils (sim) Organize Mugs (sim)

G
oa

l I
m

ag
es

t

Figure 6: Qualitative Results. We qualitatively evaluate our proposed framework on rearrangement tasks,
both in the real world and in simulation, encompassing tasks such as organizing utensils, fruits, shoes, food,
and mugs. The figure highlights that our representation can generalize across varied instances, styles, and
contexts. For instance, in the example of organizing fruit, the goal image, unlike the workspace, is styled as
a sketch drawing. Because our representation encodes semantic features, the banana in the workspace can
correspond with the banana in the goal image, which allows the task to be finished. This wide range of tasks
showcases the generalization capabilities of our framework.

corresponding heatmap on the reconstructed feature mesh. We could see that our D3Fields could
reconstruct the mesh with high quality and highlight semantically similar areas across different
instances and contexts, while F3RM fails to reconstruct the mesh accurately, which leads to an inac-
curate correspondence heatmap. Since FeatureNeRF is only pre-trained on a small dataset, it fails to
construct an accurate mesh of the scene and find accurate correspondence in novel scenes, demon-
strating our representation’s effectiveness in reconstructing meshes and encoding semantic features.
Quantitative comparisons are included in the supplementary material.

We also evaluate the time efficiency of constructing the implicit representation given four RGBD
views across four scenes on the machine with A6000 GPU. Our method takes 0.166±0.002 seconds,
which is significantly more efficient than F3RM, which takes 88.379± 5.306 seconds.

4.3 Zero-Shot Generalizable Rearrangement
We conduct a qualitative evaluation of D3Fields in common robotic rearrangement tasks in a zero-
shot manner, with partial results displayed in Figure 1 and Figure 6. We observed several key
capabilities of our framework, which are as follows:
Generalization to AI-Generated Goal Images. In Figure 1, the goal image is rendered in a Van
Gogh style, which is distinctly different from those in the workspace. Since D3Fields encode seman-
tic information, capturing shoes with varied appearances under similar descriptors, our framework
can manipulate shoes based on AI-generated goal images.
Compositional Goal Images. In the office desk organization task in Figure 1, the robot first arranges
the mouse and pen to match the goal image. Then, the robot repositions the mug from the top of a
box to the mug pad, guided by a separate goal image of the upright mug. This example illustrates
that our system can accomplish tasks using compositional goal images.
Generalization across Instances and Materials. Figure 4 and Figure 1 also show our framework’s
ability to generalize across various instances and materials. For example, the debris collection in
Figure 1 shows our framework’s ability to handle granular objects. Figure 6 further shows our frame-
work’s instance-level generalization, where the goal instances distinct from ones in the workspace.
Generalization across Simulation and Real World. We evaluated our framework in the simulator,
as shown in the utensil organization and mug organization examples in Figure 6. Given goal images
from the real world, our framework can also manipulate objects to the goal configurations. This
underscores our framework’s generalization capabilities between simulation and the real world.
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Figure 7: Representation Visualizations. To analyze our representation, we visualize the representation
across different object categories. Mask fields color objects based on their instance masks, showing effective
distinguishing among different instances. Descriptor fields color 3D points through PCA. The consistent color
patterns across instances show that our representation could encode consistent semantic features over different
instances. We also demonstrate our representation’s robustness to clustered scenes in the right two columns.

4.4 D3Fields Analysis
To obtain a more thorough understanding of our D3Fields, we first extract the mesh using the march-
ing cube algorithm. We evaluate vertices from the extracted mesh using our D3Fields and obtain the
associated segmentation information and semantic features, as visualized in Figure 7. Mask fields
in Figure 7 show a distinct 3D instance segmentation in different scenarios, even clustering scenes
like cans and toothpaste. The 3D instance segmentation enables the downstream planning module
to distinguish and manipulate multiple instances, as shown in the mug organization tasks.
Additionally, we visualize the semantic features by mapping them to RGB space using PCA. We
observe that our semantic fields show consistent color patterns across different instances. In the
provided shoe example, even though various shoes have distinct appearances and poses, they exhibit
similar color patterns: shoe heels are represented in green, and shoe toes in red. We observed
similar patterns for other object categories such as mugs and forks. The consistent semantic features
across various instances help our manipulation framework to achieve category-level generalization.
When encountering novel instances, our D3Fields can still establish the correspondence between the
workspace and the goal image using semantic features. In addition, we analyze in the supplementary
to show that D3Fields have better 3D consistency compared to simple point cloud stitching.

5 Conclusion
In this work, we introduce D3Fields, which implicitly encode 3D semantic features and 3D instance
masks, and model the underlying dynamics. Our emphasis is on zero-shot generalizable rearrange-
ment tasks specified by 2D goal images of varying styles, contexts, and instances. Our framework
excels in executing a diverse array of robotic rearrangement tasks in both simulated and real-world
scenarios. Its performance greatly surpasses baseline methods such as FeatureNeRF and F3RM in
terms of efficiency and effectiveness.
Limitation. Our method lifts 2D visual foundation models to the 3D world, enabling a range of
zero-shot rearrangement manipulation tasks. However, we both benefit from and are limited by their
capabilities. For example, the semantic feature field is not fine-grained enough to distinguish be-
tween the right and left sides of shoes. Visual foundation models with more fine-grained semantic
features are needed. In addition, rearrangement tasks could fail when they need to follow a spe-
cific manipulation order to avoid collision with other objects, e.g. a crowded scene. In the future,
incorporating a task planner to handle clustered scenes could be a valuable direction.
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