
I. METHOD

A. Perception Module
Building graph zω

t = (Ot, Et) from point cloud ȳt ∈ RN×3

contains two phases. First, we sample Ofps
t from the point

cloud using farthest-point sampling. We found that sampled
particles from the point cloud are likely to be at the edge of
underneath objects. To bias sampled particles towards object
centers, we define Ot as mass centers of Ofps

t neighbor points.
For example, for oi,fps

t ∈ Ofps
t , we find the corresponding oit ∈

Ot by applying

ȳt
′ = {y|y ∈ ȳt, ||y − oi,fps

t ||2 ≤ rcenter}

oit =
1

|ȳt′|
∑
y∈ȳt

′

y.
(1)

rcenter is the hyperparameter to determine the neighbor points.
To find edges Et, we first approximate particle displace-

ments ∆Ot using the action ut. We compute the sweeping
region given the action ut. If oit is within the sweeping region,
∆oit is the vector from oit to the pusher end. We define
Ôt = ∆Ot + Ot. For ôt

i, (ôt
i, ôt

j) ∈ Et if it satisfies the
following criteria:

||ôti − ôt
j ||2 < redge

ôt
j ∈ kNN(ôt

i).
(2)

redge is the hyperparameter to determine the distance needed
for two nodes to interact. kNN(ôt

i) is the set of k-nearest-
neighbor of the node ôt

i and k is a hyperparameter.

B. Regressor Module
We use a regularizer R(ω) to encourage efficiency as

mentioned in Equation 7. R(ω) is defined as the following:

R(ω) = wRc(zo, yg)ω.

wR is a pre-defined hyperparameter. c(z0, yg) is the task
objective for the current representation. This means that R(ω)
increases linearly as ω increases. We include c(z0, yg) in R(ω)
because we observe that c∗(ω) tends to be larger when the
initial task objective is larger.

C. Control Module
The task objective takes in the representation zω

t = (Ot, Et)
and binary heatmap yg . Given camera intrinsics, we transform
Ot to Pt ∈ Rω×2 in image space. We could also extract
points within goal region Qt ∈ RM×2 using the binary
heatmap yg . Using the farthest-point sampling, we sample
Q′

t ∈ RM ′×2 from Qt. Given these definitions, we compute
the task objective using the following equation:

c(zt, yg)

=
∑

pi∈Pt

min
qj∈Qt

||pi − qj ||2 +
∑

qj∈Q′
t

min
pi∈Pt

||pi − qj ||2. (3)

Instead of using Qt in the second term, we use Q′
t so that the

first and second terms can be balanced.
For the MPC hyperparameter in Algorithm 1, we use 20

sampled action sequences with T = 1. The number of gradient
descent iterations is 200.

II. EXPERIMENT

A. Distribution Distance

The distribution distance is computed similarly to the task
objective. We use the RGBD observation to segment out the
foreground object and obtain foreground pixels Ft ∈ RF×2.
Similar to Equation 4, the distribution distance d is defined
using the following equation:

d =
∑

fi∈Ft

min
qj∈Qt

||fi − qj ||2 +
∑

qj∈Qt

min
fi∈Ft

||fi − qj ||2 (4)

B. High-Level Planner for Sort Task

We use the A* search algorithm to find the high-level path.
We represent every blob of object piles as a circle with a fixed
radius in image space. Therefore, the state for one blob can
be represented as its 2D blob center in image space. For the
search algorithm, if there are k blobs in the scene, the node is
the concatenation of k blob centers. Neighbors of one node are
those nodes that can be reached by changing one blob center
in a single step with no collision.

To accelerate motion planning, we divide the image space
into a sparse grid. The blob center will only be on the grid.
In addition, to encourage a path with fewer steps, we add a
constant cost for each path so that a path with fewer steps is
preferred.

	Method
	Perception Module
	Regressor Module
	Control Module

	Experiment
	Distribution Distance
	High-Level Planner for Sort Task

